BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 14573370)

  • 21. Neural Network-Based Muscle Torque Estimation Using Mechanomyography During Electrically-Evoked Knee Extension and Standing in Spinal Cord Injury.
    Dzulkifli MA; Hamzaid NA; Davis GM; Hasnan N
    Front Neurorobot; 2018; 12():50. PubMed ID: 30147650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural compensation for fatigue-induced changes in muscle stiffness during perturbations of elbow angle in human.
    Kirsch RF; Rymer WZ
    J Neurophysiol; 1992 Aug; 68(2):449-70. PubMed ID: 1527569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reciprocal EMG control of elbow extension by FES.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):338-45. PubMed ID: 12018646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-Time Closed-Loop Functional Electrical Stimulation Control of Muscle Activation with Evoked Electromyography Feedback for Spinal Cord Injured Patients.
    Li Z; Guiraud D; Andreu D; Gelis A; Fattal C; Hayashibe M
    Int J Neural Syst; 2018 Aug; 28(6):1750063. PubMed ID: 29378445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.
    Soylu AR; Arpinar-Avsar P
    J Electromyogr Kinesiol; 2010 Aug; 20(4):773-6. PubMed ID: 20211568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):80-90. PubMed ID: 19211327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilizing remaining voluntary muscle synergies to control FES elbow extension after spinal cord injury.
    Giuffrida JP; Crago PE
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4118-21. PubMed ID: 17271207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of motor unit rate modulation versus recruitment in repeated submaximal voluntary contractions performed by control and spinal cord injured subjects.
    Thomas CK; del Valle A
    J Electromyogr Kinesiol; 2001 Jun; 11(3):217-29. PubMed ID: 11335152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Spatially Distributed Sequential Stimulation on Fatigue in Functional Electrical Stimulation Rowing.
    Ye G; Theventhiran P; Masani K
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():999-1008. PubMed ID: 35427223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training.
    Gerrits HL; de Haan A; Sargeant AJ; Dallmeijer A; Hopman MT
    Spinal Cord; 2000 Apr; 38(4):214-23. PubMed ID: 10822391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between myoelectric and mechanical manifestations of fatigue in the quadriceps femoris muscle group.
    Mannion AF; Dolan P
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):411-9. PubMed ID: 8954288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains.
    Karu ZZ; Durfee WK; Barzilai AM
    IEEE Trans Biomed Eng; 1995 Aug; 42(8):809-17. PubMed ID: 7642195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in surface EMG and acoustic myogram parameters during static fatiguing contractions until exhaustion: influence of elbow joint angles.
    Mamaghani NK; Shimomura Y; Iwanaga K; Katsuura T
    J Physiol Anthropol Appl Human Sci; 2001 Mar; 20(2):131-40. PubMed ID: 11385936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring of FES-induced muscle activity by continuous EMG-recording.
    Girsch W; Bijak M; Heger G; Koller R; Lanmüller H; Mayr W; Thoma H; Losert U
    Int J Artif Organs; 1995 Jun; 18(6):340-4. PubMed ID: 8593970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EMG-Informed Neuromusculoskeletal Modelling Estimates Muscle Forces and Joint Moments During Electrical Stimulation.
    Hambly MJ; De Sousa ACC; Lloyd DG; Pizzolato C
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mixed FES/EMG system for real time analysis of muscular fatigue.
    Yochum M; Binczak S; Bakir T; Jacquir S; Lepers R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4882-5. PubMed ID: 21096653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals.
    Au AT; Kirsch RF
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):471-80. PubMed ID: 11204038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor-unit activity differs with load type during a fatiguing contraction.
    Mottram CJ; Jakobi JM; Semmler JG; Enoka RM
    J Neurophysiol; 2005 Mar; 93(3):1381-92. PubMed ID: 15483059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks.
    Subasi A; Kiymik MK
    J Med Syst; 2010 Aug; 34(4):777-85. PubMed ID: 20703933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptation of the precentral cortical command to elbow muscle fatigue.
    Belhaj-Saïf A; Fourment A; Maton B
    Exp Brain Res; 1996 Oct; 111(3):405-16. PubMed ID: 8911934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.