These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 14573595)

  • 1. Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis.
    Garrity JD; Carenbauer AL; Herron LR; Crowder MW
    J Biol Chem; 2004 Jan; 279(2):920-7. PubMed ID: 14573595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis.
    Carenbauer AL; Garrity JD; Periyannan G; Yates RB; Crowder MW
    BMC Biochem; 2002; 3():4. PubMed ID: 11876827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo folding of recombinant metallo-beta-lactamase L1 requires the presence of Zn(II).
    Periyannan G; Shaw PJ; Sigdel T; Crowder MW
    Protein Sci; 2004 Aug; 13(8):2236-43. PubMed ID: 15238636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the dynamics of a mobile loop above the active site of L1, a metallo-beta-lactamase from Stenotrophomonas maltophilia, via site-directed mutagenesis and stopped-flow fluorescence spectroscopy.
    Garrity JD; Pauff JM; Crowder MW
    J Biol Chem; 2004 Sep; 279(38):39663-70. PubMed ID: 15271998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity.
    Llarrull LI; Fabiane SM; Kowalski JM; Bennett B; Sutton BJ; Vila AJ
    J Biol Chem; 2007 Jun; 282(25):18276-18285. PubMed ID: 17426028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity.
    Kim Y; Maltseva N; Wilamowski M; Tesar C; Endres M; Joachimiak A
    Protein Sci; 2020 Mar; 29(3):723-743. PubMed ID: 31846104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the role of Asp-120(81) of metallo-beta-lactamase (IMP-1) by site-directed mutagenesis, kinetic studies, and X-ray crystallography.
    Yamaguchi Y; Kuroki T; Yasuzawa H; Higashi T; Jin W; Kawanami A; Yamagata Y; Arakawa Y; Goto M; Kurosaki H
    J Biol Chem; 2005 May; 280(21):20824-32. PubMed ID: 15788415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the role of Asp-120 in metallo-beta-lactamases.
    Crisp J; Conners R; Garrity JD; Carenbauer AL; Crowder MW; Spencer J
    Biochemistry; 2007 Sep; 46(37):10664-74. PubMed ID: 17715946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of monomeric L1 metallo-beta -lactamase and the role of the N-terminal extension in negative cooperativity and antibiotic hydrolysis.
    Simm AM; Higgins CS; Carenbauer AL; Crowder MW; Bateson JH; Bennett PM; Clarke AR; Halford SE; Walsh TR
    J Biol Chem; 2002 Jul; 277(27):24744-52. PubMed ID: 11940588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of copper- and nickel-substituted analogues of metallo-beta-lactamase L1.
    Hu Z; Spadafora LJ; Hajdin CE; Bennett B; Crowder MW
    Biochemistry; 2009 Apr; 48(13):2981-9. PubMed ID: 19228020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia.
    Costello A; Periyannan G; Yang KW; Crowder MW; Tierney DL
    J Biol Inorg Chem; 2006 Apr; 11(3):351-8. PubMed ID: 16489411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Yanchak MP; Taylor RA; Crowder MW
    Biochemistry; 2000 Sep; 39(37):11330-9. PubMed ID: 10985778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal content of metallo-beta-lactamase L1 is determined by the bioavailability of metal ions.
    Hu Z; Gunasekera TS; Spadafora L; Bennett B; Crowder MW
    Biochemistry; 2008 Jul; 47(30):7947-53. PubMed ID: 18597493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic binding to dizinc beta-lactamase L1 from Stenotrophomonas maltophilia: SCC-DFTB/CHARMM and DFT studies.
    Xu D; Guo H; Cui Q
    J Phys Chem A; 2007 Jul; 111(26):5630-6. PubMed ID: 17388313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on the mononuclear ZnII-containing metallo-beta-lactamase ImiS from Aeromonas sobria.
    Sharma NP; Hajdin C; Chandrasekar S; Bennett B; Yang KW; Crowder MW
    Biochemistry; 2006 Sep; 45(35):10729-38. PubMed ID: 16939225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography.
    Spencer J; Read J; Sessions RB; Howell S; Blackburn GM; Gamblin SJ
    J Am Chem Soc; 2005 Oct; 127(41):14439-44. PubMed ID: 16218639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the design of inhibitors for the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia.
    Nauton L; Kahn R; Garau G; Hernandez JF; Dideberg O
    J Mol Biol; 2008 Jan; 375(1):257-69. PubMed ID: 17999929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis.
    Crowder MW; Wang Z; Franklin SL; Zovinka EP; Benkovic SJ
    Biochemistry; 1996 Sep; 35(37):12126-32. PubMed ID: 8810919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiotic deactivation by a dizinc beta-lactamase: mechanistic insights from QM/MM and DFT studies.
    Xu D; Guo H; Cui Q
    J Am Chem Soc; 2007 Sep; 129(35):10814-22. PubMed ID: 17691780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.