BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14573605)

  • 1. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes.
    Friedrich KL; Giese KC; Buan NR; Vierling E
    J Biol Chem; 2004 Jan; 279(2):1080-9. PubMed ID: 14573605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state.
    Lee GJ; Roseman AM; Saibil HR; Vierling E
    EMBO J; 1997 Feb; 16(3):659-71. PubMed ID: 9034347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.
    Basha E; Friedrich KL; Vierling E
    J Biol Chem; 2006 Dec; 281(52):39943-52. PubMed ID: 17090542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions.
    Basha E; Lee GJ; Breci LA; Hausrath AC; Buan NR; Giese KC; Vierling E
    J Biol Chem; 2004 Feb; 279(9):7566-75. PubMed ID: 14662763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein.
    Lee GJ; Vierling E
    Plant Physiol; 2000 Jan; 122(1):189-98. PubMed ID: 10631262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry.
    Cheng G; Basha E; Wysocki VH; Vierling E
    J Biol Chem; 2008 Sep; 283(39):26634-42. PubMed ID: 18621732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate binding site flexibility of the small heat shock protein molecular chaperones.
    Jaya N; Garcia V; Vierling E
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15604-9. PubMed ID: 19717454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression.
    Giese KC; Vierling E
    J Biol Chem; 2004 Jul; 279(31):32674-83. PubMed ID: 15152007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate.
    Santhanagopalan I; Degiacomi MT; Shepherd DA; Hochberg GKA; Benesch JLP; Vierling E
    J Biol Chem; 2018 Dec; 293(51):19511-19521. PubMed ID: 30348902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK.
    Mogk A; Schlieker C; Friedrich KL; Schönfeld HJ; Vierling E; Bukau B
    J Biol Chem; 2003 Aug; 278(33):31033-42. PubMed ID: 12788951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the interaction of small heat shock proteins with unfolding proteins.
    Stromer T; Ehrnsperger M; Gaestel M; Buchner J
    J Biol Chem; 2003 May; 278(20):18015-21. PubMed ID: 12637495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones.
    Basha E; Jones C; Blackwell AE; Cheng G; Waters ER; Samsel KA; Siddique M; Pett V; Wysocki V; Vierling E
    J Mol Biol; 2013 May; 425(10):1683-96. PubMed ID: 23416558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol.
    Basha E; Jones C; Wysocki V; Vierling E
    J Biol Chem; 2010 Apr; 285(15):11489-97. PubMed ID: 20145254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry.
    Sobott F; Benesch JL; Vierling E; Robinson CV
    J Biol Chem; 2002 Oct; 277(41):38921-9. PubMed ID: 12138169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small heat-shock proteins function in the insoluble protein complex.
    Jiao W; Li P; Zhang J; Zhang H; Chang Z
    Biochem Biophys Res Commun; 2005 Sep; 335(1):227-31. PubMed ID: 16055090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins.
    Lentze N; Aquilina JA; Lindbauer M; Robinson CV; Narberhaus F
    Eur J Biochem; 2004 Jun; 271(12):2494-503. PubMed ID: 15182365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP.
    Smýkal P; Masín J; Hrdý I; Konopásek I; Zárský V
    Plant J; 2000 Sep; 23(6):703-13. PubMed ID: 10998182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates.
    Obuchowski I; Piróg A; Stolarska M; Tomiczek B; Liberek K
    PLoS Genet; 2019 Oct; 15(10):e1008479. PubMed ID: 31652260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding.
    Żwirowski S; Kłosowska A; Obuchowski I; Nillegoda NB; Piróg A; Ziętkiewicz S; Bukau B; Mogk A; Liberek K
    EMBO J; 2017 Mar; 36(6):783-796. PubMed ID: 28219929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity.
    Giese KC; Basha E; Catague BY; Vierling E
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18896-901. PubMed ID: 16365319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.