BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14573605)

  • 21. The chloroplast small heat-shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo.
    Suzuki TC; Krawitz DC; Vierling E
    Plant Physiol; 1998 Mar; 116(3):1151-61. PubMed ID: 9501148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chaperone activity of cytosolic small heat shock proteins from wheat.
    Basha E; Lee GJ; Demeler B; Vierling E
    Eur J Biochem; 2004 Apr; 271(8):1426-36. PubMed ID: 15066169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding.
    Shi J; Koteiche HA; McDonald ET; Fox TL; Stewart PL; McHaourab HS
    J Biol Chem; 2013 Feb; 288(7):4819-30. PubMed ID: 23277356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins.
    Patel S; Vierling E; Tama F
    Biophys J; 2014 Jun; 106(12):2644-55. PubMed ID: 24940782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular Functions and Mechanisms of Action of Small Heat Shock Proteins.
    Mogk A; Ruger-Herreros C; Bukau B
    Annu Rev Microbiol; 2019 Sep; 73():89-110. PubMed ID: 31091419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings.
    Sarkar NK; Kotak S; Agarwal M; Kim YK; Grover A
    Planta; 2019 Dec; 251(1):26. PubMed ID: 31797121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis.
    Fu X; Chang Z
    Biochem Biophys Res Commun; 2004 Apr; 316(2):291-9. PubMed ID: 15020216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state.
    Matuszewska M; Kuczyńska-Wiśnik D; Laskowska E; Liberek K
    J Biol Chem; 2005 Apr; 280(13):12292-8. PubMed ID: 15665332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wrapping the alpha-crystallin domain fold in a chaperone assembly.
    Stamler R; Kappé G; Boelens W; Slingsby C
    J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vitro Structural and Functional Characterization of the Small Heat Shock Proteins (sHSP) of the Cyanophage S-ShM2 and Its Host, Synechococcus sp. WH7803.
    Bourrelle-Langlois M; Morrow G; Finet S; Tanguay RM
    PLoS One; 2016; 11(9):e0162233. PubMed ID: 27643500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function.
    Stengel F; Baldwin AJ; Painter AJ; Jaya N; Basha E; Kay LE; Vierling E; Robinson CV; Benesch JL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2007-12. PubMed ID: 20133845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Initial characterization of newly identified mitochondrial and chloroplast small HSPs from sugarcane shows that these chaperones have different oligomerization states and substrate specificities.
    Pinheiro GMS; Ramos CHI
    Plant Physiol Biochem; 2018 Aug; 129():285-294. PubMed ID: 29909242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays.
    Lentze N; Narberhaus F
    Biochem Biophys Res Commun; 2004 Dec; 325(2):401-7. PubMed ID: 15530406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
    Kaldis A; Atkinson BG; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins.
    Datskevich PN; Mymrikov EV; Gusev NB
    Biochimie; 2012 Aug; 94(8):1794-804. PubMed ID: 22531625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and functional properties of proteins interacting with small heat shock proteins.
    Dabbaghizadeh A; Tanguay RM
    Cell Stress Chaperones; 2020 Jul; 25(4):629-637. PubMed ID: 32314314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of small heat shock protein (sHSP) genes in the garden pea (Pisum sativum) under slow horizontal clinorotation.
    Talalaiev O; Korduym E
    Plant Signal Behav; 2014 Apr; 9():. PubMed ID: 24786104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed.
    Jiao W; Hong W; Li P; Sun S; Ma J; Qian M; Hu M; Chang Z
    Biochem J; 2008 Feb; 410(1):63-70. PubMed ID: 17995456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recombinant expression and in vitro refolding of the yeast small heat shock protein Hsp42.
    Haslbeck M
    Int J Biol Macromol; 2006 Mar; 38(2):107-14. PubMed ID: 16488470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster.
    Morrow G; Heikkila JJ; Tanguay RM
    Cell Stress Chaperones; 2006; 11(1):51-60. PubMed ID: 16572729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.