These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 14573613)
41. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Rangan P; Masquida B; Westhof E; Woodson SA Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1574-9. PubMed ID: 12574513 [TBL] [Abstract][Full Text] [Related]
42. Naegleria nucleolar introns contain two group I ribozymes with different functions in RNA splicing and processing. Einvik C; Decatur WA; Embley TM; Vogt VM; Johansen S RNA; 1997 Jul; 3(7):710-20. PubMed ID: 9214655 [TBL] [Abstract][Full Text] [Related]
43. Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans. Zhang Y; Leibowitz MJ Nucleic Acids Res; 2001 Jun; 29(12):2644-53. PubMed ID: 11410674 [TBL] [Abstract][Full Text] [Related]
44. Characterization of P8 and J8/7 elements in the conserved core of the tetrahymena group I intron ribozyme. Ikawa Y; Shiraishi H; Inoue T Biochem Biophys Res Commun; 2000 Jan; 267(1):85-90. PubMed ID: 10623579 [TBL] [Abstract][Full Text] [Related]
45. A small structural element, Pc-J5/5a, plays dual roles in a group IC1 intron RNA. Ikawa Y; Shiraishi H; Inoue T Biochem Biophys Res Commun; 2000 Jul; 274(1):259-65. PubMed ID: 10903928 [TBL] [Abstract][Full Text] [Related]
46. Productive folding to the native state by a group II intron ribozyme. Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013 [TBL] [Abstract][Full Text] [Related]
47. A synthetic model for triple-helical domains in self-splicing group I introns studied by ultraviolet and circular dichroism spectroscopy. Sarkar M; Sigurdsson S; Tomac S; Sen S; Rozners E; Sjöberg BM; Strömberg R; Gräslund A Biochemistry; 1996 Apr; 35(15):4678-88. PubMed ID: 8664257 [TBL] [Abstract][Full Text] [Related]
48. Folding mechanism of the Tetrahymena ribozyme P4-P6 domain. Deras ML; Brenowitz M; Ralston CY; Chance MR; Woodson SA Biochemistry; 2000 Sep; 39(36):10975-85. PubMed ID: 10998234 [TBL] [Abstract][Full Text] [Related]
49. Selection of a ribozyme that functions as a superior template in a self-copying reaction. Green R; Szostak JW Science; 1992 Dec; 258(5090):1910-5. PubMed ID: 1470913 [TBL] [Abstract][Full Text] [Related]
50. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity. Campbell TB; Cech TR Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205 [TBL] [Abstract][Full Text] [Related]
51. NAIM and site-specific functional group modification analysis of RNase P RNA: magnesium dependent structure within the conserved P1-P4 multihelix junction contributes to catalysis. Kaye NM; Christian EL; Harris ME Biochemistry; 2002 Apr; 41(14):4533-45. PubMed ID: 11926814 [TBL] [Abstract][Full Text] [Related]
52. Function of tyrosyl-tRNA synthetase in splicing group I introns: an induced-fit model for binding to the P4-P6 domain based on analysis of mutations at the junction of the P4-P6 stacked helices. Chen X; Gutell RR; Lambowitz AM J Mol Biol; 2000 Aug; 301(2):265-83. PubMed ID: 10926509 [TBL] [Abstract][Full Text] [Related]
53. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions. Caprara MG; Myers CA; Lambowitz AM J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760 [TBL] [Abstract][Full Text] [Related]
54. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. Ortoleva-Donnelly L; Szewczak AA; Gutell RR; Strobel SA RNA; 1998 May; 4(5):498-519. PubMed ID: 9582093 [TBL] [Abstract][Full Text] [Related]
55. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains. Ikawa Y; Shiraishi H; Inoue T J Biochem; 1998 Mar; 123(3):528-33. PubMed ID: 9538238 [TBL] [Abstract][Full Text] [Related]
56. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA. Pan J; Deras ML; Woodson SA J Mol Biol; 2000 Feb; 296(1):133-44. PubMed ID: 10656822 [TBL] [Abstract][Full Text] [Related]
57. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites. Mobley EM; Pan T Nucleic Acids Res; 1999 Nov; 27(21):4298-304. PubMed ID: 10518624 [TBL] [Abstract][Full Text] [Related]
58. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core. Testa SM; Haidaris CG; Gigliotti F; Turner DH Biochemistry; 1997 Dec; 36(49):15303-14. PubMed ID: 9398259 [TBL] [Abstract][Full Text] [Related]
59. Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. Christian EL; Kaye NM; Harris ME RNA; 2000 Apr; 6(4):511-9. PubMed ID: 10786842 [TBL] [Abstract][Full Text] [Related]
60. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. Mei R; Herschlag D Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]