BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 14573700)

  • 21. Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase.
    Newberry KJ; Hou YM; Perona JJ
    EMBO J; 2002 Jun; 21(11):2778-87. PubMed ID: 12032090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase.
    Connolly SA; Rosen AE; Musier-Forsyth K; Francklyn CS
    Biochemistry; 2004 Feb; 43(4):962-9. PubMed ID: 14744140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of variability by in vivo recombination of halves of a (beta/alpha)8 barrel protein.
    Saab-Rincón G; Mancera E; Montero-Morán G; Sánchez F; Soberón X
    Biomol Eng; 2005 Oct; 22(4):113-20. PubMed ID: 16125117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional consequences of mutating a proteobacteria-specific surface residue in the catalytic domain of Escherichia coli GluRS.
    Dasgupta S; Manna D; Basu G
    FEBS Lett; 2012 Jun; 586(12):1724-30. PubMed ID: 22584057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fold recognition, homology modeling, docking simulations, kinetics analysis and mutagenesis of ATP/CTP:tRNA nucleotidyltransferase from Methanococcus jannaschii.
    Bujnicki JM; Albert MA; Nelson DJ; Thurlow DL
    Proteins; 2003 Aug; 52(3):349-59. PubMed ID: 12866049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex assembly mechanism and an RNA-binding mode of the human p14-SF3b155 spliceosomal protein complex identified by NMR solution structure and functional analyses.
    Kuwasako K; Dohmae N; Inoue M; Shirouzu M; Taguchi S; Güntert P; Séraphin B; Muto Y; Yokoyama S
    Proteins; 2008 Jun; 71(4):1617-36. PubMed ID: 18076038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing enzyme quaternary structure by combinatorial mutagenesis and selection.
    MacBeath G; Kast P; Hilvert D
    Protein Sci; 1998 Aug; 7(8):1757-67. PubMed ID: 10082372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile.
    Romier C; Reuter K; Suck D; Ficner R
    Biochemistry; 1996 Dec; 35(49):15734-9. PubMed ID: 8961936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An enhanced system for unnatural amino acid mutagenesis in E. coli.
    Young TS; Ahmad I; Yin JA; Schultz PG
    J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acid residues of the Escherichia coli tRNA(m5U54)methyltransferase (TrmA) critical for stability, covalent binding of tRNA and enzymatic activity.
    Urbonavicius J; Jäger G; Björk GR
    Nucleic Acids Res; 2007; 35(10):3297-305. PubMed ID: 17459887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I.
    Foster PG; Huang L; Santi DV; Stroud RM
    Nat Struct Biol; 2000 Jan; 7(1):23-7. PubMed ID: 10625422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein tolerance to random amino acid change.
    Guo HH; Choe J; Loeb LA
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9205-10. PubMed ID: 15197260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hidden Markov model approach for identifying the modular framework of the protein backbone.
    Camproux AC; Tuffery P; Chevrolat JP; Boisvieux JF; Hazout S
    Protein Eng; 1999 Dec; 12(12):1063-73. PubMed ID: 10611400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro mutagenesis to define functional domains.
    Qin J; Peng Z; McLeod MV
    Methods Mol Biol; 2004; 241():189-94. PubMed ID: 14970654
    [No Abstract]   [Full Text] [Related]  

  • 37. In vitro genetics.
    Szostak JW
    Trends Biochem Sci; 1992 Mar; 17(3):89-93. PubMed ID: 1384177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-Wide Identification and Analysis of OsSPXs Revealed Its Genetic Influence on Cold Tolerance of Dongxiang Wild Rice (DXWR).
    Huang C; Wang J; Wang D; Chang J; Chen H; Chen D; Deng W; Tian C
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural reconstruction of protein ancestry.
    Rouet R; Langley DB; Schofield P; Christie M; Roome B; Porebski BT; Buckle AM; Clifton BE; Jackson CJ; Stock D; Christ D
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3897-3902. PubMed ID: 28356519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fuzzy oil drop model to interpret the structure of antifreeze proteins and their mutants.
    Banach M; Prymula K; Jurkowski W; Konieczny L; Roterman I
    J Mol Model; 2012 Jan; 18(1):229-37. PubMed ID: 21523554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.