BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14573700)

  • 41. Evidence that gene G7a in the human major histocompatibility complex encodes valyl-tRNA synthetase.
    Hsieh SL; Campbell RD
    Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):809-16. PubMed ID: 1898367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing.
    Lancaster L; Kiel MC; Kaji A; Noller HF
    Cell; 2002 Oct; 111(1):129-40. PubMed ID: 12372306
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of T4 modification of host valyl-tRNA synthetase on enzyme action in vivo.
    Comer MM; Neidhardt FC
    Virology; 1975 Oct; 67(2):395-403. PubMed ID: 1103443
    [No Abstract]   [Full Text] [Related]  

  • 44. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase.
    Dulic M; Perona JJ; Gruic-Sovulj I
    Biochemistry; 2014 Oct; 53(39):6189-98. PubMed ID: 25207837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning and sequence determination of the valS gene, encoding valyl-tRNA synthetase in Lactobacillus casei.
    Taylor BV; Toy J; Sit TL; Bognar AL
    J Bacteriol; 1993 Apr; 175(8):2475-8. PubMed ID: 8468307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu.
    Mursinna RS; Lincecum TL; Martinis SA
    Biochemistry; 2001 May; 40(18):5376-81. PubMed ID: 11331000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy cost of translational proofreading in vivo. The aminoacylation of transfer RNA in Escherichia coli.
    Jakubowski H
    Ann N Y Acad Sci; 1994 Nov; 745():4-20. PubMed ID: 7530434
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular cloning and characterization of the gene for Escherichia coli valyl-tRNA synthetase.
    Skogman SG; Nilsson J
    Gene; 1984 Oct; 30(1-3):219-26. PubMed ID: 6392024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Valyl-tRNA synthetase gene of Escherichia coli K12. Molecular genetic characterization.
    Heck JD; Hatfield GW
    J Biol Chem; 1988 Jan; 263(2):857-67. PubMed ID: 3275659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of the amino acid invariants in the active site of MurG as evaluated by site-directed mutagenesis.
    Crouvoisier M; Auger G; Blanot D; Mengin-Lecreulx D
    Biochimie; 2007 Dec; 89(12):1498-508. PubMed ID: 17692452
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shape-selective RNA recognition by cysteinyl-tRNA synthetase.
    Hauenstein S; Zhang CM; Hou YM; Perona JJ
    Nat Struct Mol Biol; 2004 Nov; 11(11):1134-41. PubMed ID: 15489861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A chemical toolkit for proteins--an expanded genetic code.
    Xie J; Schultz PG
    Nat Rev Mol Cell Biol; 2006 Oct; 7(10):775-82. PubMed ID: 16926858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular trigger for pre-transfer editing pathway in Valyl-tRNA synthetase: a molecular dynamics simulation study.
    Li L; Yu L; Huang Q
    J Mol Model; 2011 Mar; 17(3):555-64. PubMed ID: 20512602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sequence-structure-function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA.
    Roovers M; Oudjama Y; Kaminska KH; Purta E; Caillet J; Droogmans L; Bujnicki JM
    Proteins; 2008 Jun; 71(4):2076-85. PubMed ID: 18186482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNA
    Stephen P; Ye S; Zhou M; Song J; Zhang R; Wang ED; Giegé R; Lin SX
    J Mol Biol; 2018 May; 430(11):1590-1606. PubMed ID: 29678554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arginine-395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Kim HY; Demaret JP; Brunie S; Schulman LH
    Biochemistry; 1991 Dec; 30(51):11767-74. PubMed ID: 1751493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition.
    Bi K; Zheng Y; Gao F; Dong J; Wang J; Wang Y; Gong W
    Protein Cell; 2014 Feb; 5(2):151-9. PubMed ID: 24474195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli.
    Chatterjee A; Sun SB; Furman JL; Xiao H; Schultz PG
    Biochemistry; 2013 Mar; 52(10):1828-37. PubMed ID: 23379331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.