BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 14573758)

  • 1. Interaction between the mu opioid receptor and filamin A is involved in receptor regulation and trafficking.
    Onoprishvili I; Andria ML; Kramer HK; Ancevska-Taneva N; Hiller JM; Simon EJ
    Mol Pharmacol; 2003 Nov; 64(5):1092-100. PubMed ID: 14573758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions with filamin A stimulate surface expression of large-conductance Ca2+-activated K+ channels in the absence of direct actin binding.
    Kim EY; Ridgway LD; Dryer SE
    Mol Pharmacol; 2007 Sep; 72(3):622-30. PubMed ID: 17586600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous regulator of g protein signaling proteins reduce {mu}-opioid receptor desensitization and down-regulation and adenylyl cyclase tolerance in C6 cells.
    Clark MJ; Traynor JR
    J Pharmacol Exp Ther; 2005 Feb; 312(2):809-15. PubMed ID: 15383633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-selective activation of mu-oid receptor: demonstrated with deletion and single amino acid mutations of third intracellular loop domain.
    Chaipatikul V; Loh HH; Law PY
    J Pharmacol Exp Ther; 2003 Jun; 305(3):909-18. PubMed ID: 12626655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual effects of DAMGO [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) on adenylyl cyclase activity: implications for mu-opioid receptor Gs coupling.
    Szücs M; Boda K; Gintzler AR
    J Pharmacol Exp Ther; 2004 Jul; 310(1):256-62. PubMed ID: 14996951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous regulator of G protein signaling proteins suppress Galphao-dependent, mu-opioid agonist-mediated adenylyl cyclase supersensitization.
    Clark MJ; Neubig RR; Traynor JR
    J Pharmacol Exp Ther; 2004 Jul; 310(1):215-22. PubMed ID: 15014136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opioid peptide receptor studies. 17. Attenuation of chronic morphine effects after antisense oligodeoxynucleotide knock-down of RGS9 protein in cells expressing the cloned Mu opioid receptor.
    Xu H; Wang X; Wang J; Rothman RB
    Synapse; 2004 Jun; 52(3):209-17. PubMed ID: 15065220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A member of the heat shock protein 40 family, hlj1, binds to the carboxyl tail of the human mu opioid receptor.
    Ancevska-Taneva N; Onoprishvili I; Andria ML; Hiller JM; Simon EJ
    Brain Res; 2006 Apr; 1081(1):28-33. PubMed ID: 16542645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filamin A mutant lacking actin-binding domain restores mu opioid receptor regulation in melanoma cells.
    Onoprishvili I; Ali S; Andria ML; Shpigel A; Simon EJ
    Neurochem Res; 2008 Oct; 33(10):2054-61. PubMed ID: 18404377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction between the mu opioid receptor and filamin A.
    Simon EJ; Onoprishvili I
    Neurochem Res; 2010 Dec; 35(12):1859-66. PubMed ID: 20857334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic morphine treatment up-regulates mu opioid receptor binding in cells lacking filamin A.
    Onoprishvili I; Simon EJ
    Brain Res; 2007 Oct; 1177():9-18. PubMed ID: 17897634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of agmatine on DAMGO-induced mu-opioid receptor down-regulation and internalization via activation of IRAS, a candidate for imidazoline I(1) receptor.
    Gao Y; Li F; Wu N; Su RB; Liu Y; Lu XQ; Liu Y; Li J
    Eur J Pharmacol; 2008 Dec; 599(1-3):18-23. PubMed ID: 18845140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RGSZ1 interacts with protein kinase C interacting protein PKCI-1 and modulates mu opioid receptor signaling.
    Ajit SK; Ramineni S; Edris W; Hunt RA; Hum WT; Hepler JR; Young KH
    Cell Signal; 2007 Apr; 19(4):723-30. PubMed ID: 17126529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. delta-Opioid receptors are more efficiently coupled to adenylyl cyclase than to L-type Ca(2+) channels in transfected rat pituitary cells.
    Prather PL; Song L; Piros ET; Law PY; Hales TG
    J Pharmacol Exp Ther; 2000 Nov; 295(2):552-62. PubMed ID: 11046088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mu opioid receptor mutant, T394A, abolishes opioid-mediated adenylyl cyclase superactivation.
    Wang H; Guang W; Barbier E; Shapiro P; Wang JB
    Neuroreport; 2007 Dec; 18(18):1969-73. PubMed ID: 18007196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opioid-induced regulation of gene expression in PC12 cells stably transfected with mu-opioid receptor.
    Zarnegar P; Persson AI; Ming Y; Terenius L
    Neurosci Lett; 2006 Apr; 396(3):197-201. PubMed ID: 16377088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opioid mu receptor activation inhibits sodium currents in prefrontal cortical neurons via a protein kinase A- and C-dependent mechanism.
    Witkowski G; Szulczyk P
    Brain Res; 2006 Jun; 1094(1):92-106. PubMed ID: 16733049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional coupling of a mu opioid receptor to G proteins and adenylyl cyclase: modulation by chronic morphine treatment.
    Chen Y; Liu J; Yu L
    Addict Biol; 1996; 1(1):49-59. PubMed ID: 12893486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic antidepressant treatment causes a selective reduction of mu-opioid receptor binding and functional coupling to G Proteins in the amygdala of fawn-hooded rats.
    Chen F; Lawrence AJ
    J Pharmacol Exp Ther; 2004 Sep; 310(3):1020-6. PubMed ID: 15121763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient overexpression of kappa and mu opioid receptors using recombinant adenovirus vectors.
    Zhen Z; Bradel-Tretheway BG; Dewhurst S; Bidlack JM
    J Neurosci Methods; 2004 Jul; 136(2):133-9. PubMed ID: 15183265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.