BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 14573853)

  • 1. Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach.
    Chattopadhyay A; Rawat SS; Kelkar DA; Ray S; Chakrabarti A
    Protein Sci; 2003 Nov; 12(11):2389-403. PubMed ID: 14573853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization and dynamics of tryptophan residues in brain spectrin: novel insight into conformational flexibility.
    Mitra M; Chaudhuri A; Patra M; Mukhopadhyay C; Chakrabarti A; Chattopadhyay A
    J Fluoresc; 2015 May; 25(3):707-17. PubMed ID: 25835748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization and dynamics of tryptophans in the molten globule state of bovine alpha-lactalbumin utilizing wavelength-selective fluorescence approach: comparisons with native and denatured states.
    Chaudhuri A; Haldar S; Chattopadhyay A
    Biochem Biophys Res Commun; 2010 Apr; 394(4):1082-6. PubMed ID: 20346348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
    Kelkar DA; Chattopadhyay A; Chakrabarti A; Bhattacharyya M
    Biopolymers; 2005 Apr; 77(6):325-34. PubMed ID: 15648086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring tryptophan dynamics in acid-induced molten globule state of bovine alpha-lactalbumin: a wavelength-selective fluorescence approach.
    Kelkar DA; Chaudhuri A; Haldar S; Chattopadhyay A
    Eur Biophys J; 2010 Sep; 39(10):1453-63. PubMed ID: 20372885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic insight into protein structure utilizing red edge excitation shift.
    Chattopadhyay A; Haldar S
    Acc Chem Res; 2014 Jan; 47(1):12-9. PubMed ID: 23981188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing Tryptophan Microenvironment of Amyloid Protein Utilizing Wavelength-Selective Fluorescence Approach.
    Chakraborty H; Chattopadhyay A
    J Fluoresc; 2017 Nov; 27(6):1995-2000. PubMed ID: 28687983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational study of spectrin in presence of submolar concentrations of denaturants.
    Ray S; Bhattacharyya M; Chakrabarti A
    J Fluoresc; 2005 Jan; 15(1):61-70. PubMed ID: 15711878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of a denatured heme protein and ATP to erythroid spectrin.
    Chakrabarti A; Bhattacharya S; Ray S; Bhattacharyya M
    Biochem Biophys Res Commun; 2001 Apr; 282(5):1189-93. PubMed ID: 11302741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Tryptophan Dynamics in Spectrin and Its Constituent Domains: Insights from Fluorescence.
    Pal S; Bose D; Chakrabarti A; Chattopadhyay A
    J Phys Chem B; 2022 Feb; 126(5):1045-1053. PubMed ID: 34845910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubulin conformation and dynamics: a red edge excitation shift study.
    Guha S; Rawat SS; Chattopadhyay A; Bhattacharyya B
    Biochemistry; 1996 Oct; 35(41):13426-33. PubMed ID: 8873611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrin organization and dynamics: new insights.
    Chakrabarti A; Kelkar DA; Chattopadhyay A
    Biosci Rep; 2006 Dec; 26(6):369-86. PubMed ID: 17029004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence and circular dichroism spectroscopic studies on bovine lactoperoxidase.
    Deva MS; Behere DV
    Biometals; 1999 Sep; 12(3):219-25. PubMed ID: 10581684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pH on stability, conformation, and chaperone activity of erythroid & non-erythroid spectrin.
    Bose D; Patra M; Chakrabarti A
    Biochim Biophys Acta Proteins Proteom; 2017 Jun; 1865(6):694-702. PubMed ID: 28373029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the major protein from bovine seminal plasma, PDC-109 with phospholipid membranes and soluble ligands investigated by fluorescence approaches.
    Anbazhagan V; Damai RS; Paul A; Swamy MJ
    Biochim Biophys Acta; 2008 Jun; 1784(6):891-9. PubMed ID: 18402784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of either the highly conserved Trp-22 or the moderately conserved Trp-95 to a large, hydrophobic residue reduces the thermodynamic stability of a spectrin repeating unit.
    Pantazatos DP; MacDonald RI
    J Biol Chem; 1997 Aug; 272(34):21052-9. PubMed ID: 9261107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift.
    Haldar S; Chaudhuri A; Chattopadhyay A
    J Phys Chem B; 2011 May; 115(19):5693-706. PubMed ID: 21428321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites.
    Kahana E; Pinder JC; Smith KS; Gratzer WB
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):75-80. PubMed ID: 1540147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies.
    Patra M; Mitra M; Chakrabarti A; Mukhopadhyay C
    J Biomol Struct Dyn; 2014; 32(6):852-65. PubMed ID: 24404769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring gramicidin conformations in membranes: a fluorescence approach.
    Rawat SS; Kelkar DA; Chattopadhyay A
    Biophys J; 2004 Aug; 87(2):831-43. PubMed ID: 15298892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.