These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 14573864)
1. Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer. Flynn TC; Swint-Kruse L; Kong Y; Booth C; Matthews KS; Ma J Protein Sci; 2003 Nov; 12(11):2523-41. PubMed ID: 14573864 [TBL] [Abstract][Full Text] [Related]
2. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. Taraban M; Zhan H; Whitten AE; Langley DB; Matthews KS; Swint-Kruse L; Trewhella J J Mol Biol; 2008 Feb; 376(2):466-81. PubMed ID: 18164724 [TBL] [Abstract][Full Text] [Related]
3. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor. Xu J; Matthews KS Biochemistry; 2009 Jun; 48(22):4988-98. PubMed ID: 19368358 [TBL] [Abstract][Full Text] [Related]
4. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR. Swint-Kruse L; Larson C; Pettitt BM; Matthews KS Protein Sci; 2002 Apr; 11(4):778-94. PubMed ID: 11910022 [TBL] [Abstract][Full Text] [Related]
5. A closer view of the conformation of the Lac repressor bound to operator. Bell CE; Lewis M Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279 [TBL] [Abstract][Full Text] [Related]
6. Functional impact of polar and acidic substitutions in the lactose repressor hydrophobic monomer.monomer interface with a buried lysine. Zhan H; Sun Z; Matthews KS Biochemistry; 2009 Feb; 48(6):1305-14. PubMed ID: 19166325 [TBL] [Abstract][Full Text] [Related]
7. Substitutions at histidine 74 and aspartate 278 alter ligand binding and allostery in lactose repressor protein. Barry JK; Matthews KS Biochemistry; 1999 Mar; 38(12):3579-90. PubMed ID: 10090744 [TBL] [Abstract][Full Text] [Related]
8. Structure of a variant of lac repressor with increased thermostability and decreased affinity for operator. Bell CE; Barry J; Matthews KS; Lewis M J Mol Biol; 2001 Oct; 313(1):99-109. PubMed ID: 11601849 [TBL] [Abstract][Full Text] [Related]
9. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants. Barry JK; Matthews KS Biochemistry; 1997 Dec; 36(50):15632-42. PubMed ID: 9398291 [TBL] [Abstract][Full Text] [Related]
10. Plasticity of quaternary structure: twenty-two ways to form a LacI dimer. Swint-Kruse L; Elam CR; Lin JW; Wycuff DR; Shive Matthews K Protein Sci; 2001 Feb; 10(2):262-76. PubMed ID: 11266612 [TBL] [Abstract][Full Text] [Related]
11. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Xu J; Liu S; Chen M; Ma J; Matthews KS Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765 [TBL] [Abstract][Full Text] [Related]
12. Structural analysis of lac repressor bound to allosteric effectors. Daber R; Stayrook S; Rosenberg A; Lewis M J Mol Biol; 2007 Jul; 370(4):609-19. PubMed ID: 17543986 [TBL] [Abstract][Full Text] [Related]
13. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication. Zhan H; Camargo M; Matthews KS Biochemistry; 2010 Oct; 49(39):8636-45. PubMed ID: 20804152 [TBL] [Abstract][Full Text] [Related]
14. Integrated insights from simulation, experiment, and mutational analysis yield new details of LacI function. Swint-Kruse L; Zhan H; Matthews KS Biochemistry; 2005 Aug; 44(33):11201-13. PubMed ID: 16101304 [TBL] [Abstract][Full Text] [Related]
15. Strengthening the dimerisation interface of Lac repressor increases its thermostability by 40 deg. C. Gerk LP; Leven O; Müller-Hill B J Mol Biol; 2000 Jun; 299(3):805-12. PubMed ID: 10835285 [TBL] [Abstract][Full Text] [Related]
16. Comparison of simulated and experimentally determined dynamics for a variant of the Lacl DNA-binding domain, Nlac-P. Swint-Kruse L; Matthews KS; Smith PE; Pettitt BM Biophys J; 1998 Jan; 74(1):413-21. PubMed ID: 9449341 [TBL] [Abstract][Full Text] [Related]
17. Biochemistry. Completing the view of transcriptional regulation. von Hippel PH Science; 2004 Jul; 305(5682):350-2. PubMed ID: 15256661 [No Abstract] [Full Text] [Related]
18. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein. Barry JK; Matthews KS Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470 [TBL] [Abstract][Full Text] [Related]
19. Tet repressor induction by tetracycline: a molecular dynamics, continuum electrostatics, and crystallographic study. Aleksandrov A; Schuldt L; Hinrichs W; Simonson T J Mol Biol; 2008 May; 378(4):898-912. PubMed ID: 18395746 [TBL] [Abstract][Full Text] [Related]