BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 14574549)

  • 1. Film analysis of activated sludge microbial discs by the Taguchi method and grey relational analysis.
    Chen MY; Syu MJ
    Bioprocess Biosyst Eng; 2003 Dec; 26(2):83-92. PubMed ID: 14574549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR.
    Kindaichi T; Kawano Y; Ito T; Satoh H; Okabe S
    Biotechnol Bioeng; 2006 Aug; 94(6):1111-21. PubMed ID: 16596626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological waste gas treatment with a modified rotating biological contactor. II. Effect of operating parameters on process performance and mathematical modeling.
    Vinage I; von Rohr PR
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):75-82. PubMed ID: 14505166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI).
    Manz B; Volke F; Goll D; Horn H
    Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology.
    Venkata Mohan S; Chandrasekhara Rao N; Krishna Prasad K; Murali Krishna P; Sreenivas Rao R; Sarma PN
    Biotechnol Bioeng; 2005 Jun; 90(6):732-45. PubMed ID: 15812798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linearized kinetic model of Listeria monocytogenes biofilm growth.
    Takhistov P; George B
    Bioprocess Biosyst Eng; 2004 Jul; 26(4):259-70. PubMed ID: 15179574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrification kinetics of activated sludge-biofilm system: a mathematical model.
    Thalla AK; Bhargava R; Kumar P
    Bioresour Technol; 2010 Aug; 101(15):5827-35. PubMed ID: 20338756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impacts of the AOC concentration on biofilm formation under higher shear force condition.
    Tsai YP; Pai TY; Qiu JM
    J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of an aerobic biofilm reactor with double-limiting substrate kinetics: bifurcational and dynamical analysis.
    Olivieri G; Russo ME; Marzocchella A; Salatino P
    Biotechnol Prog; 2011; 27(6):1599-613. PubMed ID: 21956900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H; Reiff H; Morgenroth E
    Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growing and analyzing biofilms in fermenters.
    Ramey BE; Parsek MR
    Curr Protoc Microbiol; 2005 Oct; Chapter 1():Unit 1B.3. PubMed ID: 18770546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial structure and community of RBC biofilm removing nitrate and phosphorus from domestic wastewater.
    Lee H; Choi E; Yun Z; Park YK
    J Microbiol Biotechnol; 2008 Aug; 18(8):1459-69. PubMed ID: 18756109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady state model for evaluation of external and internal mass transfer effects in an immobilized biofilm.
    Mudliar S; Banerjee S; Vaidya A; Devotta S
    Bioresour Technol; 2008 Jun; 99(9):3468-74. PubMed ID: 17869505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological waste gas treatment with a modified rotating biological contactor. Iota. Control of biofilm growth and long-term performance.
    Vinage I; von Rohr PR
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):69-74. PubMed ID: 14564499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of fermentation parameters from the results of a batch test taking account of the volume of biomass in the fermenting medium.
    Borzani W
    Biotechnol Lett; 2003 Nov; 25(22):1953-6. PubMed ID: 14719833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simplified model for the steady-state biofilm-activated sludge reactor.
    Fouad M; Bhargava R
    J Environ Manage; 2005 Feb; 74(3):245-53. PubMed ID: 15644264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.
    Sen D; Randall CW
    Water Environ Res; 2008 May; 80(5):439-53. PubMed ID: 18605383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chapter 4: In vitro biofilm models: an overview.
    McBain AJ
    Adv Appl Microbiol; 2009; 69():99-132. PubMed ID: 19729092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.