BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 14575238)

  • 41. Conditional N-WASP knockout in mouse brain implicates actin cytoskeleton regulation in hydrocephalus pathology.
    Jain N; Lim LW; Tan WT; George B; Makeyev E; Thanabalu T
    Exp Neurol; 2014 Apr; 254():29-40. PubMed ID: 24462670
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation.
    Ibañez-Tallon I; Pagenstecher A; Fliegauf M; Olbrich H; Kispert A; Ketelsen UP; North A; Heintz N; Omran H
    Hum Mol Genet; 2004 Sep; 13(18):2133-41. PubMed ID: 15269178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pathogenesis of murine toxoplasmic hydrocephalus.
    Stahl W; Kaneda Y
    Parasitology; 1997 Mar; 114 ( Pt 3)():219-29. PubMed ID: 9075342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Melanin-concentrating hormone (MCH) immunoreactivity in non-neuronal cells within the raphe nuclei and subventricular region of the brainstem of the cat.
    Torterolo P; Lagos P; Sampogna S; Chase MH
    Brain Res; 2008 May; 1210():163-78. PubMed ID: 18410908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells.
    Baas D; Meiniel A; Benadiba C; Bonnafe E; Meiniel O; Reith W; Durand B
    Eur J Neurosci; 2006 Aug; 24(4):1020-30. PubMed ID: 16930429
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphological aspects of the development of hydrocephalus in a mouse mutant (SUMS/NP).
    Jones HC; Dack S; Ellis C
    Acta Neuropathol; 1987; 72(3):268-76. PubMed ID: 3564907
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Msx1-deficient mice fail to form prosomere 1 derivatives, subcommissural organ, and posterior commissure and develop hydrocephalus.
    Fernández-Llebrez P; Grondona JM; Pérez J; López-Aranda MF; Estivill-Torrús G; Llebrez-Zayas PF; Soriano E; Ramos C; Lallemand Y; Bach A; Robert B
    J Neuropathol Exp Neurol; 2004 Jun; 63(6):574-86. PubMed ID: 15217086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain.
    Peretto P; Giachino C; Aimar P; Fasolo A; Bonfanti L
    J Comp Neurol; 2005 Jul; 487(4):407-27. PubMed ID: 15906315
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The morphology of tellurium-induced hydrocephalus.
    Duckett S
    Exp Neurol; 1971 Apr; 31(1):1-16. PubMed ID: 4101944
    [No Abstract]   [Full Text] [Related]  

  • 50. Reovirus-induced aqueductal stenosis in hamsters. Phase contrast and electron microscopic studies.
    Nielsen SL; Baringer JR
    Lab Invest; 1972 Dec; 27(6):531-7. PubMed ID: 4345171
    [No Abstract]   [Full Text] [Related]  

  • 51. SrGAP3 knockout mice display enlarged lateral ventricles and specific cilia disturbances of ependymal cells in the third ventricle.
    Koschützke L; Bertram J; Hartmann B; Bartsch D; Lotze M; von Bohlen und Halbach O
    Cell Tissue Res; 2015 Aug; 361(2):645-50. PubMed ID: 26104135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice.
    Feldner A; Adam MG; Tetzlaff F; Moll I; Komljenovic D; Sahm F; Bäuerle T; Ishikawa H; Schroten H; Korff T; Hofmann I; Wolburg H; von Deimling A; Fischer A
    EMBO Mol Med; 2017 Jul; 9(7):890-905. PubMed ID: 28500065
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrocephalus produced by the 6/94 virus; A parainfluenza type 1 isolate from multiple sclerosis brain tissue.
    Friedman HM; Gilden DH; Lief FS; Rorke LB; Santoli D; Koprowski H
    Arch Neurol; 1975 Jun; 32(6):408-13. PubMed ID: 165802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Absence of subcommissural organ in the cerebral aqueduct of congenital hydrocephalus spontaneously occurring in MT/HokIdr mice.
    Takeuchi IK; Kimura R; Matsuda M; Shoji R
    Acta Neuropathol; 1987; 73(4):320-2. PubMed ID: 3618124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Congenital hydrocephalus revealed in the inbred rat, LEW/Jms.
    Sasaki S; Goto H; Nagano H; Furuya K; Omata Y; Kanazawa K; Suzuki K; Sudo K; Collmann H
    Neurosurgery; 1983 Nov; 13(5):548-54. PubMed ID: 6606138
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of a cell niche with proliferative potential at the roof of the aqueduct of Sylvius.
    Martínez-Mendoza ML; Rodríguez-Arzate CA; Gómez-González GB; Kirchhoff F; Martínez-Torres A
    Neurosci Res; 2023 Mar; 188():28-38. PubMed ID: 36375656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cyclophosphamide-induced agenesis of cerebral aqueduct resulting in hydrocephalus in mice.
    Prakash ; Singh G; Singh SM
    Neurosurg Rev; 2007 Jul; 30(3):245-51; discussion 251. PubMed ID: 17457626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sporadic obstructive hydrocephalus in Aqp4 null mice.
    Feng X; Papadopoulos MC; Liu J; Li L; Zhang D; Zhang H; Verkman AS; Ma T
    J Neurosci Res; 2009 Apr; 87(5):1150-5. PubMed ID: 18951529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dysplasia of subcommissural organ in congenital hydrocephalus spontaneously occurring in CWS/Idr rats.
    Takeuchi IK; Kimura R; Shoji R
    Experientia; 1988 Apr; 44(4):338-40. PubMed ID: 3360084
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.
    Filice F; Celio MR; Babalian A; Blum W; Szabolcsi V
    J Comp Neurol; 2017 Oct; 525(15):3266-3285. PubMed ID: 28675430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.