BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14575748)

  • 1. Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations.
    Khan SJ; Ongerth JE
    Chemosphere; 2004 Jan; 54(3):355-67. PubMed ID: 14575748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modelling.
    Khan SJ; Ongerth JE
    Water Sci Technol; 2002; 46(3):105-13. PubMed ID: 12227595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage.
    Carballa M; Omil F; Lema JM
    Chemosphere; 2008 Jul; 72(8):1118-23. PubMed ID: 18514761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio.
    Spongberg AL; Witter JD
    Sci Total Environ; 2008 Jul; 397(1-3):148-57. PubMed ID: 18396321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of hormones and pharmaceuticals in the Advanced Water Recycling Demonstration Plant in Queensland, Australia.
    Khan SJ; Wintgens T; Sherman P; Zaricky J; Schäfer AI
    Water Sci Technol; 2004; 50(5):15-22. PubMed ID: 15497824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of polar drug residues in sewage and surface water applying liquid chromatography-tandem mass spectrometry.
    Zuehlke S; Duennbier U; Heberer T
    Anal Chem; 2004 Nov; 76(22):6548-54. PubMed ID: 15538775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of carbamazepine in sewage treatment plant effluents and its implications for control strategies of pharmaceutical aquatic contamination.
    Zhang Y; Geissen SU
    Chemosphere; 2010 Sep; 80(11):1345-52. PubMed ID: 20594577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters.
    Fang TH; Nan FH; Chin TS; Feng HM
    Mar Pollut Bull; 2012 Jul; 64(7):1435-44. PubMed ID: 22608946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada.
    Lishman L; Smyth SA; Sarafin K; Kleywegt S; Toito J; Peart T; Lee B; Servos M; Beland M; Seto P
    Sci Total Environ; 2006 Aug; 367(2-3):544-58. PubMed ID: 16697441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of human pharmaceutical concentrations in raw municipal wastewater and yellowwater.
    Winker M; Faika D; Gulyas H; Otterpohl R
    Sci Total Environ; 2008 Jul; 399(1-3):96-104. PubMed ID: 18455216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the fraction of pharmaceutical residues in wastewater originating from a hospital.
    Ort C; Lawrence MG; Reungoat J; Eaglesham G; Carter S; Keller J
    Water Res; 2010 Jan; 44(2):605-15. PubMed ID: 19717180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast.
    Gómez MJ; Martínez Bueno MJ; Lacorte S; Fernández-Alba AR; Agüera A
    Chemosphere; 2007 Jan; 66(6):993-1002. PubMed ID: 16962638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden.
    Bendz D; Paxéus NA; Ginn TR; Loge FJ
    J Hazard Mater; 2005 Jul; 122(3):195-204. PubMed ID: 15967274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment.
    Nakada N; Tanishima T; Shinohara H; Kiri K; Takada H
    Water Res; 2006 Oct; 40(17):3297-303. PubMed ID: 16938339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J; Petrović M; Barceló D
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea.
    Choi K; Kim Y; Park J; Park CK; Kim M; Kim HS; Kim P
    Sci Total Environ; 2008 Nov; 405(1-3):120-8. PubMed ID: 18684486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites.
    Weigel S; Berger U; Jensen E; Kallenborn R; Thoresen H; Hühnerfuss H
    Chemosphere; 2004 Aug; 56(6):583-92. PubMed ID: 15212901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elimination of pharmaceuticals in sewage treatment plants in Finland.
    Vieno N; Tuhkanen T; Kronberg L
    Water Res; 2007 Mar; 41(5):1001-12. PubMed ID: 17261324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel analytical procedures for screening of drug residues in water, waste water, sediment and sludge.
    Buchberger WW
    Anal Chim Acta; 2007 Jun; 593(2):129-39. PubMed ID: 17543599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass balance assessment of triclosan removal during conventional sewage treatment.
    Heidler J; Halden RU
    Chemosphere; 2007 Jan; 66(2):362-9. PubMed ID: 16766013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.