BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 14576309)

  • 1. Recognition of threosyl nucleotides by DNA and RNA polymerases.
    Kempeneers V; Vastmans K; Rozenski J; Herdewijn P
    Nucleic Acids Res; 2003 Nov; 31(21):6221-6. PubMed ID: 14576309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the chemical diversity of TNA with tUTP derivatives that are substrates for a TNA polymerase.
    Mei H; Chaput JC
    Chem Commun (Camb); 2018 Jan; 54(10):1237-1240. PubMed ID: 29340357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides.
    Vastmans K; Froeyen M; Kerremans L; Pochet S; Herdewijn P
    Nucleic Acids Res; 2001 Aug; 29(15):3154-63. PubMed ID: 11470872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbocyclic analogues of dTTP and UTP: properties in polymerase enzyme-catalyzed reactions.
    Sági J; Szécsi J; Szemzó A; Sági G; Otvös L
    Nucleic Acids Symp Ser; 1987; (18):131-5. PubMed ID: 3320975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereospecificity of human DNA polymerases alpha, beta, gamma, delta and epsilon, HIV-reverse transcriptase, HSV-1 DNA polymerase, calf thymus terminal transferase and Escherichia coli DNA polymerase I in recognizing D- and L-thymidine 5'-triphosphate as substrate.
    Focher F; Maga G; Bendiscioli A; Capobianco M; Colonna F; Garbesi A; Spadari S
    Nucleic Acids Res; 1995 Aug; 23(15):2840-7. PubMed ID: 7544886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of an efficient DNA-dependent TNA polymerase.
    Horhota A; Zou K; Ichida JK; Yu B; McLaughlin LW; Szostak JW; Chaput JC
    J Am Chem Soc; 2005 May; 127(20):7427-34. PubMed ID: 15898792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral discrimination of enantiomeric 2'-deoxythymidine 5'-triphosphate by HIV-1 reverse transcriptase and eukaryotic DNA polymerases.
    Yamaguchi T; Iwanami N; Shudo K; Saneyoshi M
    Biochem Biophys Res Commun; 1994 Apr; 200(2):1023-7. PubMed ID: 7513992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TNA synthesis by DNA polymerases.
    Chaput JC; Szostak JW
    J Am Chem Soc; 2003 Aug; 125(31):9274-5. PubMed ID: 12889939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of self-sustained sequence-replication reaction systems.
    Gebinoga M; Oehlenschläger F
    Eur J Biochem; 1996 Jan; 235(1-2):256-61. PubMed ID: 8631338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of DNA and RNA polymerases in resurfacing rabbit corneal epithelium.
    Colley AM; Law ML; Drake LA; Cavanagh HD
    Curr Eye Res; 1987 Mar; 6(3):477-87. PubMed ID: 3581870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerase-dependent DNA synthesis from phosphoramidate-activated nucleotides.
    Yang S; Herdewijn P
    Nucleosides Nucleotides Nucleic Acids; 2011; 30(7-8):597-608. PubMed ID: 21888550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization.
    Kempeneers V; Renders M; Froeyen M; Herdewijn P
    Nucleic Acids Res; 2005; 33(12):3828-36. PubMed ID: 16027107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2'-Deoxynucleoside 5'-triphosphates modified at alpha-, beta- and gamma-phosphates as substrates for DNA polymerases.
    Alexandrova LA; Skoblov AY; Jasko MV; Victorova LS; Krayevsky AA
    Nucleic Acids Res; 1998 Feb; 26(3):778-86. PubMed ID: 9443970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids.
    Hocek M; Fojta M
    Org Biomol Chem; 2008 Jul; 6(13):2233-41. PubMed ID: 18563253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Polymerase Recognition of Threose Nucleic Acid Triphosphates Equipped with Diverse Chemical Functionalities.
    Li Q; Maola VA; Chim N; Hussain J; Lozoya-Colinas A; Chaput JC
    J Am Chem Soc; 2021 Oct; 143(42):17761-17768. PubMed ID: 34637287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of 2'-deoxy-L-thymidine 5'-triphosphate on human immunodeficiency virus reverse transcriptase and eukaryotic DNA polymerases.
    Yamaguchi T; Saneyoshi M; Shudo K
    Nucleic Acids Symp Ser; 1993; (29):135-6. PubMed ID: 7504240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly fluorescent 5-(5,6-dimethoxybenzothiazol-2-yl)-2'-deoxyuridine 5'-triphosphate as an efficient substrate for DNA polymerases.
    Sato K; Sasaki A; Matsuda A
    Chembiochem; 2011 Oct; 12(15):2341-6. PubMed ID: 21887841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.