BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 14576318)

  • 1. Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity.
    Giraldo P; Martínez A; Regales L; Lavado A; García-Díaz A; Alonso A; Busturia A; Montoliu L
    Nucleic Acids Res; 2003 Nov; 31(21):6290-305. PubMed ID: 14576318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors binding a non-classical Cis-element prevent heterochromatin effects on locus control region activity.
    Harrow F; Amuta JU; Hutchinson SR; Akwaa F; Ortiz BD
    J Biol Chem; 2004 Apr; 279(17):17842-9. PubMed ID: 14966120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR.
    Tanimoto K; Liu Q; Bungert J; Engel JD
    Nucleic Acids Res; 1999 Aug; 27(15):3130-7. PubMed ID: 10454609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position effects are influenced by the orientation of a transgene with respect to flanking chromatin.
    Feng YQ; Lorincz MC; Fiering S; Greally JM; Bouhassira EE
    Mol Cell Biol; 2001 Jan; 21(1):298-309. PubMed ID: 11113204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a DNase hypersensitive region of the human tyrosinase gene.
    Fryer JP; Oetting WS; King RA
    Pigment Cell Res; 2003 Dec; 16(6):679-84. PubMed ID: 14629726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjacent DNA elements dominantly restrict the ubiquitous activity of a novel chromatin-opening region to specific tissues.
    Ortiz BD; Cado D; Chen V; Diaz PW; Winoto A
    EMBO J; 1997 Aug; 16(16):5037-45. PubMed ID: 9305645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that DNase I hypersensitive site 5 of the human beta-globin locus control region functions as a chromosomal insulator in transgenic mice.
    Li Q; Zhang M; Han H; Rohde A; Stamatoyannopoulos G
    Nucleic Acids Res; 2002 Jun; 30(11):2484-91. PubMed ID: 12034837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and functional validation of a 5' upstream regulatory sequence in the human tyrosinase gene homologous to the locus control region of the mouse tyrosinase gene.
    Regales L; Giraldo P; García-Díaz A; Lavado A; Montoliu L
    Pigment Cell Res; 2003 Dec; 16(6):685-92. PubMed ID: 14629727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An erythroid-specific chromatin opening element reorganizes beta-globin promoter chromatin structure and augments gene expression.
    Nemeth MJ; Bodine DM; Garrett LJ; Lowrey CH
    Blood Cells Mol Dis; 2001; 27(4):767-80. PubMed ID: 11778661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancer-blocking activity is associated with hypersensitive site V sequences in the human growth hormone locus control region.
    Jin Y; Oomah K; Cattini PA
    DNA Cell Biol; 2011 Dec; 30(12):995-1005. PubMed ID: 21711161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTCF-independent, but not CTCF-dependent, elements significantly contribute to TCR-alpha locus control region activity.
    Gomos-Klein J; Harrow F; Alarcón J; Ortiz BD
    J Immunol; 2007 Jul; 179(2):1088-95. PubMed ID: 17617601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of human beta-globin locus control region hypersensitive sites in the absence of chromatin assembly.
    Leach KM; Nightingale K; Igarashi K; Levings PP; Engel JD; Becker PB; Bungert J
    Mol Cell Biol; 2001 Apr; 21(8):2629-40. PubMed ID: 11283243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual LCR hypersensitive sites cooperate to generate an open chromatin domain spanning the human beta-globin locus.
    Li G; Lim KC; Engel JD; Bungert J
    Genes Cells; 1998 Jul; 3(7):415-29. PubMed ID: 9753424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dominant chromatin-opening activity in 5' hypersensitive site 3 of the human beta-globin locus control region.
    Ellis J; Tan-Un KC; Harper A; Michalovich D; Yannoutsos N; Philipsen S; Grosveld F
    EMBO J; 1996 Feb; 15(3):562-8. PubMed ID: 8599939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boundary sequences flanking the mouse tyrosinase locus ensure faithful pattern of gene expression.
    Seruggia D; Fernández A; Cantero M; Fernández-Miñán A; Gomez-Skarmeta JL; Pelczar P; Montoliu L
    Sci Rep; 2020 Sep; 10(1):15494. PubMed ID: 32968154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new element within the T-cell receptor alpha locus required for tissue-specific locus control region activity.
    Ortiz BD; Cado D; Winoto A
    Mol Cell Biol; 1999 Mar; 19(3):1901-9. PubMed ID: 10022877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function and factor interactions of a locus control region element in the mouse T cell receptor-alpha/Dad1 gene locus.
    Ortiz BD; Harrow F; Cado D; Santoso B; Winoto A
    J Immunol; 2001 Oct; 167(7):3836-45. PubMed ID: 11564801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enhancer/locus control region is not sufficient to open chromatin.
    Reitman M; Lee E; Westphal H; Felsenfeld G
    Mol Cell Biol; 1993 Jul; 13(7):3990-8. PubMed ID: 8321206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distal upstream tyrosinase S/MAR-containing sequence has regulatory properties specific to subsets of melanocytes.
    Porter SD; Hu J; Gilks CB
    Dev Genet; 1999; 25(1):40-8. PubMed ID: 10402671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture.
    Fang X; Sun J; Xiang P; Yu M; Navas PA; Peterson KR; Stamatoyannopoulos G; Li Q
    Mol Cell Biol; 2005 Aug; 25(16):7033-41. PubMed ID: 16055715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.