These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1457678)

  • 1. Controlled drug release from implantable matrices based on hydrophobic polymers.
    Di Colo G
    Biomaterials; 1992; 13(12):850-6. PubMed ID: 1457678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of proxyphylline's release from silicone rubber matrices by the use of osmotically active excipients and a multi-layer system.
    Soulas DN; Papadokostaki KG
    Int J Pharm; 2011 Apr; 408(1-2):120-9. PubMed ID: 21335074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a novel osmotically driven drug delivery system for weakly basic drugs.
    Guthmann C; Lipp R; Wagner T; Kranz H
    Eur J Pharm Biopharm; 2008 Jun; 69(2):667-74. PubMed ID: 18226884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled drug release from polymers.
    Folkman J
    Hosp Pract; 1978 Mar; 13(3):127-33. PubMed ID: 640629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymers for the controlled release of macromolecules: effect of molecular weight of ethylene-vinyl acetate copolymer.
    Hsu TT; Langer R
    J Biomed Mater Res; 1985 Apr; 19(4):445-60. PubMed ID: 4055827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo and in vitro release of macromolecules from polymeric drug delivery systems.
    Brown LR; Wei CL; Langer R
    J Pharm Sci; 1983 Oct; 72(10):1181-5. PubMed ID: 6644569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of osmotically active drugs from silicone rubber matrixes.
    Di Colo G; Campigli V; Carelli V; Nannipieri E; Serafini MF; Vitale D
    Farmaco Prat; 1984 Sep; 39(9):310-9. PubMed ID: 6500025
    [No Abstract]   [Full Text] [Related]  

  • 8. Proxyphylline release kinetics from symmetrical three-layer silicone rubber matrices: effect of different excipients in the outer rate-controlling layers.
    Soulas DN; Sanopoulou M; Papadokostaki KG
    Int J Pharm; 2012 May; 427(2):192-200. PubMed ID: 22330934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-demand release by ultrasound from osmotically swollen hydrophobic matrices.
    Aschkenasy C; Kost J
    J Control Release; 2005 Dec; 110(1):58-66. PubMed ID: 16257468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical deformation of polymer matrix controlled release devices modulates drug release.
    Edelman ER; Fiorino A; Grodzinsky A; Langer R
    J Biomed Mater Res; 1992 Dec; 26(12):1619-31. PubMed ID: 1484066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of insulin from polymer matrices. In vitro kinetics.
    Brown L; Siemer L; Munoz C; Langer R
    Diabetes; 1986 Jun; 35(6):684-91. PubMed ID: 3519323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems.
    Schneider C; Langer R; Loveday D; Hair D
    J Control Release; 2017 Sep; 262():284-295. PubMed ID: 28789964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timolol release from matrices of monoesters of poly(vinyl methyl ether-maleic anhydride): effects of polymer molecular weight and a basic additive.
    Finne U; Rönkkö K; Urtti A
    J Pharm Sci; 1991 Jul; 80(7):670-3. PubMed ID: 1941566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an osmotic pump system for controlled delivery of diclofenac sodium.
    Emara LH; Taha NF; Badr RM; Mursi NM
    Drug Discov Ther; 2012 Oct; 6(5):269-77. PubMed ID: 23229148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of polymer content on early gel-layer formation in HPMC matrices: The use of CLSM visualisation to identify the percolation threshold.
    Mason LM; Campiñez MD; Pygall SR; Burley JC; Gupta P; Storey DE; Caraballo I; Melia CD
    Eur J Pharm Biopharm; 2015 Aug; 94():485-92. PubMed ID: 26143369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene-vinyl acetate copolymer microspheres for controlled release of macromolecules.
    Sefton MV; Brown LR; Langer RS
    J Pharm Sci; 1984 Dec; 73(12):1859-61. PubMed ID: 6527279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zero-order controlled-release polymer matrices for micro- and macromolecules.
    Hsieh DS; Rhine WD; Langer R
    J Pharm Sci; 1983 Jan; 72(1):17-22. PubMed ID: 6827458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled-release drug delivery of diphosphonates to inhibit bioprosthetic heart valve calcification: release rate modulation with silicone matrices via drug solubility and membrane coating.
    Golomb G; Dixon M; Smith MS; Schoen FJ; Levy RJ
    J Pharm Sci; 1987 Apr; 76(4):271-6. PubMed ID: 3110404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of water-soluble carriers on morphine sulfate release from a silicone polymer.
    McGinity JW; Hunke LA; Combs AB
    J Pharm Sci; 1979 May; 68(5):662-4. PubMed ID: 430515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.