BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 1457724)

  • 1. Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme.
    Nicholson H; Tronrud DE; Becktel WJ; Matthews BW
    Biopolymers; 1992 Nov; 32(11):1431-41. PubMed ID: 1457724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences.
    Eriksson AE; Baase WA; Matthews BW
    J Mol Biol; 1993 Feb; 229(3):747-69. PubMed ID: 8433369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent.
    Blaber M; Baase WA; Gassner N; Matthews BW
    J Mol Biol; 1995 Feb; 246(2):317-30. PubMed ID: 7869383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and structural compensation in "size-switch" core repacking variants of bacteriophage T4 lysozyme.
    Baldwin E; Xu J; Hajiseyedjavadi O; Baase WA; Matthews BW
    J Mol Biol; 1996 Jun; 259(3):542-59. PubMed ID: 8676387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability.
    Wray JW; Baase WA; Lindstrom JD; Weaver LH; Poteete AR; Matthews BW
    J Mol Biol; 1999 Oct; 292(5):1111-20. PubMed ID: 10512706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mutant T4 lysozyme (Val 131----Ala) designed to increase thermostability by the reduction of strain within an alpha-helix.
    Dao-Pin S; Baase WA; Matthews BW
    Proteins; 1990; 7(2):198-204. PubMed ID: 2326253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The introduction of strain and its effects on the structure and stability of T4 lysozyme.
    Liu R; Baase WA; Matthews BW
    J Mol Biol; 2000 Jan; 295(1):127-45. PubMed ID: 10623513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of conserved proline residues in stabilizing tryptophan synthase alpha subunit: analysis by mutants with alanine or glycine.
    Yutani K; Hayashi S; Sugisaki Y; Ogasahara K
    Proteins; 1991; 9(2):90-8. PubMed ID: 2008436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accommodation of amino acid insertions in an alpha-helix of T4 lysozyme. Structural and thermodynamic analysis.
    Heinz DW; Baase WA; Zhang XJ; Blaber M; Dahlquist FW; Matthews BW
    J Mol Biol; 1994 Feb; 236(3):869-86. PubMed ID: 8114100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein flexibility and adaptability seen in 25 crystal forms of T4 lysozyme.
    Zhang XJ; Wozniak JA; Matthews BW
    J Mol Biol; 1995 Jul; 250(4):527-52. PubMed ID: 7616572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding.
    Matthews BW; Nicholson H; Becktel WJ
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6663-7. PubMed ID: 3477797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling.
    Mchaourab HS; Oh KJ; Fang CJ; Hubbell WL
    Biochemistry; 1997 Jan; 36(2):307-16. PubMed ID: 9003182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can one predict protein stability? An attempt to do so for residue 133 of T4 lysozyme using a combination of free energy derivatives, PROFEC, and free energy perturbation methods.
    Wang L; Veenstra DL; Radmer RJ; Kollman PA
    Proteins; 1998 Sep; 32(4):438-58. PubMed ID: 9726415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme.
    Blaber M; Lindstrom JD; Gassner N; Xu J; Heinz DW; Matthews BW
    Biochemistry; 1993 Oct; 32(42):11363-73. PubMed ID: 8218201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme.
    Nicholson H; Anderson DE; Dao-pin S; Matthews BW
    Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of point amino acid substitutions on T4 phage lysozyme stability. II. Transition of a protein molecule to the "molten globule" state with replacements Asp10---His, Asn101---Asp, Arg148---Ser].
    Leont'ev VV; UverskiÄ­ VN; Griaznova OI; Gudkov AT
    Biofizika; 1993; 38(4):606-10. PubMed ID: 8364063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbation of Trp 138 in T4 lysozyme by mutations at Gln 105 used to correlate changes in structure, stability, solvation, and spectroscopic properties.
    Pjura P; McIntosh LP; Wozniak JA; Matthews BW
    Proteins; 1993 Apr; 15(4):401-12. PubMed ID: 8460110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of medium- and long-range interactions to the stability of the mutants of T4 lysozyme.
    Gromiha MM; Thangakani AM
    Prep Biochem Biotechnol; 2001 Aug; 31(3):217-27. PubMed ID: 11513088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.