These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 1457724)
1. Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme. Nicholson H; Tronrud DE; Becktel WJ; Matthews BW Biopolymers; 1992 Nov; 32(11):1431-41. PubMed ID: 1457724 [TBL] [Abstract][Full Text] [Related]
2. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284 [TBL] [Abstract][Full Text] [Related]
3. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. Eriksson AE; Baase WA; Matthews BW J Mol Biol; 1993 Feb; 229(3):747-69. PubMed ID: 8433369 [TBL] [Abstract][Full Text] [Related]
4. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent. Blaber M; Baase WA; Gassner N; Matthews BW J Mol Biol; 1995 Feb; 246(2):317-30. PubMed ID: 7869383 [TBL] [Abstract][Full Text] [Related]
6. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability. Zhang XJ; Baase WA; Matthews BW Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. Wray JW; Baase WA; Lindstrom JD; Weaver LH; Poteete AR; Matthews BW J Mol Biol; 1999 Oct; 292(5):1111-20. PubMed ID: 10512706 [TBL] [Abstract][Full Text] [Related]
8. A mutant T4 lysozyme (Val 131----Ala) designed to increase thermostability by the reduction of strain within an alpha-helix. Dao-Pin S; Baase WA; Matthews BW Proteins; 1990; 7(2):198-204. PubMed ID: 2326253 [TBL] [Abstract][Full Text] [Related]
9. The introduction of strain and its effects on the structure and stability of T4 lysozyme. Liu R; Baase WA; Matthews BW J Mol Biol; 2000 Jan; 295(1):127-45. PubMed ID: 10623513 [TBL] [Abstract][Full Text] [Related]
10. Role of conserved proline residues in stabilizing tryptophan synthase alpha subunit: analysis by mutants with alanine or glycine. Yutani K; Hayashi S; Sugisaki Y; Ogasahara K Proteins; 1991; 9(2):90-8. PubMed ID: 2008436 [TBL] [Abstract][Full Text] [Related]
11. Accommodation of amino acid insertions in an alpha-helix of T4 lysozyme. Structural and thermodynamic analysis. Heinz DW; Baase WA; Zhang XJ; Blaber M; Dahlquist FW; Matthews BW J Mol Biol; 1994 Feb; 236(3):869-86. PubMed ID: 8114100 [TBL] [Abstract][Full Text] [Related]
12. Protein flexibility and adaptability seen in 25 crystal forms of T4 lysozyme. Zhang XJ; Wozniak JA; Matthews BW J Mol Biol; 1995 Jul; 250(4):527-52. PubMed ID: 7616572 [TBL] [Abstract][Full Text] [Related]
13. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Matthews BW; Nicholson H; Becktel WJ Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6663-7. PubMed ID: 3477797 [TBL] [Abstract][Full Text] [Related]
14. Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Mchaourab HS; Oh KJ; Fang CJ; Hubbell WL Biochemistry; 1997 Jan; 36(2):307-16. PubMed ID: 9003182 [TBL] [Abstract][Full Text] [Related]
15. Can one predict protein stability? An attempt to do so for residue 133 of T4 lysozyme using a combination of free energy derivatives, PROFEC, and free energy perturbation methods. Wang L; Veenstra DL; Radmer RJ; Kollman PA Proteins; 1998 Sep; 32(4):438-58. PubMed ID: 9726415 [TBL] [Abstract][Full Text] [Related]
16. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme. Blaber M; Lindstrom JD; Gassner N; Xu J; Heinz DW; Matthews BW Biochemistry; 1993 Oct; 32(42):11363-73. PubMed ID: 8218201 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme. Nicholson H; Anderson DE; Dao-pin S; Matthews BW Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773 [TBL] [Abstract][Full Text] [Related]
18. [The effect of point amino acid substitutions on T4 phage lysozyme stability. II. Transition of a protein molecule to the "molten globule" state with replacements Asp10---His, Asn101---Asp, Arg148---Ser]. Leont'ev VV; UverskiÄ VN; Griaznova OI; Gudkov AT Biofizika; 1993; 38(4):606-10. PubMed ID: 8364063 [TBL] [Abstract][Full Text] [Related]
19. Perturbation of Trp 138 in T4 lysozyme by mutations at Gln 105 used to correlate changes in structure, stability, solvation, and spectroscopic properties. Pjura P; McIntosh LP; Wozniak JA; Matthews BW Proteins; 1993 Apr; 15(4):401-12. PubMed ID: 8460110 [TBL] [Abstract][Full Text] [Related]
20. Role of medium- and long-range interactions to the stability of the mutants of T4 lysozyme. Gromiha MM; Thangakani AM Prep Biochem Biotechnol; 2001 Aug; 31(3):217-27. PubMed ID: 11513088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]