These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 14577654)

  • 1. Peptides and liposomes: from biophysical to immunogenic studies.
    Busquets MA; Alsina MA; Haro I
    Curr Drug Targets; 2003 Nov; 4(8):633-42. PubMed ID: 14577654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liposomes: from biophysics to the design of peptide vaccines.
    Frézard F
    Braz J Med Biol Res; 1999 Feb; 32(2):181-9. PubMed ID: 10347753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers.
    Hung SC; Wang W; Chan SI; Chen HM
    Biophys J; 1999 Dec; 77(6):3120-33. PubMed ID: 10585933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance.
    Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G
    Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures.
    Rovira-Bru M; Thompson DH; Szleifer I
    Biophys J; 2002 Nov; 83(5):2419-39. PubMed ID: 12414678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical aspects of using liposomes as delivery vehicles.
    Ulrich AS
    Biosci Rep; 2002 Apr; 22(2):129-50. PubMed ID: 12428898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between ion channel-inactivating peptides and anionic phospholipid vesicles as model targets.
    Encinar JA; Fernandez AM; Gavilanes F; Albar JP; Ferragut JA; Gonzalez-Ros JM
    Biophys J; 1996 Sep; 71(3):1313-23. PubMed ID: 8874005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic peptide-based highly immunogenic liposomal constructs.
    Frisch B; Roth A; Schuber F
    Methods Enzymol; 2003; 373():51-73. PubMed ID: 14714396
    [No Abstract]   [Full Text] [Related]  

  • 10. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery.
    Peetla C; Stine A; Labhasetwar V
    Mol Pharm; 2009; 6(5):1264-76. PubMed ID: 19432455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial interactions of hydrophobic peptides with lipid bilayers.
    Reig F; Haro I; Polo D; Egea MA; Alsina MA
    J Colloid Interface Sci; 2002 Feb; 246(1):60-9. PubMed ID: 16290384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of diphytanoyl phospholipids at the air-water interface.
    Yasmann A; Sukharev S
    Langmuir; 2015; 31(1):350-7. PubMed ID: 25474305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liposomes as carriers of antigens and adjuvants.
    Alving CR
    J Immunol Methods; 1991 Jun; 140(1):1-13. PubMed ID: 1712030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of a synthetic peptide corresponding to the N-terminus of canine distemper virus fusion protein with phospholipid vesicles: a biophysical study.
    Aranda FJ; Teruel JA; Ortiz A
    Biochim Biophys Acta; 2003 Dec; 1618(1):51-8. PubMed ID: 14643933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Membrane-Active Peptides Get into Lipid Membranes.
    Sani MA; Separovic F
    Acc Chem Res; 2016 Jun; 49(6):1130-8. PubMed ID: 27187572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces.
    Lösche M; Piepenstock M; Diederich A; Grünewald T; Kjaer K; Vaknin D
    Biophys J; 1993 Nov; 65(5):2160-77. PubMed ID: 8298041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of peptide/lipid hydrophobic mismatch on the phase behavior of model membranes mimicking the lipid composition in Escherichia coli membranes.
    Morein S; Koeppe II RE; Lindblom G; de Kruijff B; Killian JA
    Biophys J; 2000 May; 78(5):2475-85. PubMed ID: 10777744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes.
    Nezil FA; Bloom M
    Biophys J; 1992 May; 61(5):1176-83. PubMed ID: 1600079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of dystrophin fragments with model membranes.
    DeWolf C; McCauley P; Sikorski AF; Winlove CP; Bailey AI; Kahana E; Pinder JC; Gratzer WB
    Biophys J; 1997 Jun; 72(6):2599-604. PubMed ID: 9168035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.