These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 14577783)

  • 1. Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles.
    Grisaru H; Palchik O; Gedanken A; Palchik V; Slifkin MA; Weiss AM
    Inorg Chem; 2003 Nov; 42(22):7148-55. PubMed ID: 14577783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles.
    Harpeness R; Gedanken A
    Langmuir; 2004 Apr; 20(8):3431-4. PubMed ID: 15875878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties.
    Couto GG; Klein JJ; Schreiner WH; Mosca DH; de Oliveira AJ; Zarbin AJ
    J Colloid Interface Sci; 2007 Jul; 311(2):461-8. PubMed ID: 17433349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and size control of monodisperse copper nanoparticles by polyol method.
    Park BK; Jeong S; Kim D; Moon J; Lim S; Kim JS
    J Colloid Interface Sci; 2007 Jul; 311(2):417-24. PubMed ID: 17448490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-Assisted Coating of PMMA beads by silver nanoparticles.
    Irzh A; Perkas N; Gedanken A
    Langmuir; 2007 Sep; 23(19):9891-7. PubMed ID: 17705515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct synthesis and characterizations of fct-structured FePt nanoparticles using poly(N-vinyl-2-pyrrolidone) as a protecting agent.
    Iwamoto T; Matsumoto K; Matsushita T; Inokuchi M; Toshima N
    J Colloid Interface Sci; 2009 Aug; 336(2):879-88. PubMed ID: 19476950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, morphology and magnetic properties of Mg((x))Zn((1 - x))Fe2O4 ferrites prepared by polyol and aqueous co-precipitation methods: a low-toxicity alternative to Ni((x))Zn((1 - x))Fe2O4 ferrites.
    Daigle A; Modest J; Geiler AL; Gillette S; Chen Y; Geiler M; Hu B; Kim S; Stopher K; Vittoria C; Harris VG
    Nanotechnology; 2011 Jul; 22(30):305708. PubMed ID: 21719975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured CaWO4, CaWO4 : Pb2+ and CaWO4 : Tb3+ particles: polyol-mediated synthesis and luminescent properties.
    Wang Z; Lil G; Quan Z; Kong D; Liu X; Yu M; Lin J
    J Nanosci Nanotechnol; 2007 Feb; 7(2):602-9. PubMed ID: 17450802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of platinum nanoparticles in heterogeneous solid-liquid system by ultrasound and microwave irradiation.
    Ishikawa D; Hayashi Y; Takizawa H
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4482-7. PubMed ID: 19049044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-assisted polyol synthesis of aluminium- and indium-doped ZnO nanocrystals.
    Hammarberg E; Prodi-Schwab A; Feldmann C
    J Colloid Interface Sci; 2009 Jun; 334(1):29-36. PubMed ID: 19375713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions.
    Wu SH; Chen DH
    J Colloid Interface Sci; 2004 May; 273(1):165-9. PubMed ID: 15051447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the agglomeration of anisotropic Ru nanoparticles by the microwave-polyol process.
    Harpeness R; Peng Z; Liu X; Pol VG; Koltypin Y; Gedanken A
    J Colloid Interface Sci; 2005 Jul; 287(2):678-84. PubMed ID: 15925637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.
    Nishioka M; Miyakawa M; Kataoka H; Koda H; Sato K; Suzuki TM
    Nanoscale; 2011 Jun; 3(6):2621-6. PubMed ID: 21552644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic solvent-dispersed TiO(2) nanoparticle characterization.
    Rao Y; Antalek B; Minter J; Mourey T; Blanton T; Slater G; Slater L; Fornalik J
    Langmuir; 2009 Nov; 25(21):12713-20. PubMed ID: 19856994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water.
    Shen YF; Tang J; Nie ZH; Wang YD; Ren Y; Zuo L
    Bioresour Technol; 2009 Sep; 100(18):4139-46. PubMed ID: 19414249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles.
    Teng X; Yang H
    J Am Chem Soc; 2003 Nov; 125(47):14559-63. PubMed ID: 14624605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine.
    Yamamoto M; Kashiwagi Y; Nakamoto M
    Langmuir; 2006 Sep; 22(20):8581-6. PubMed ID: 16981779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles.
    Zhang J; Post M; Veres T; Jakubek ZJ; Guan J; Wang D; Normandin F; Deslandes Y; Simard B
    J Phys Chem B; 2006 Apr; 110(14):7122-8. PubMed ID: 16599475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols.
    Cai W; Wan J
    J Colloid Interface Sci; 2007 Jan; 305(2):366-70. PubMed ID: 17084856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: observation of magnetization and its relaxation at low temperature.
    Sivakumar M; Takami T; Ikuta H; Towata A; Yasui K; Tuziuti T; Kozuka T; Bhattacharya D; Iida Y
    J Phys Chem B; 2006 Aug; 110(31):15234-43. PubMed ID: 16884240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.