BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1457891)

  • 1. Laboratory experience with a novel, non-occlusive, pressure-regulated peristaltic blood pump.
    Montoya JP; Merz SI; Bartlett RH
    ASAIO J; 1992; 38(3):M406-11. PubMed ID: 1457891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant safety advantages gained with an improved pressure-regulated blood pump.
    Montoya JP; Merz SI; Bartlett RH
    J Extra Corpor Technol; 1996 Jun; 28(2):71-8. PubMed ID: 10160447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity pump system: a new peristaltic blood pump for cardiopulmonary bypass.
    Jaggy C; Lachat M; Leskosek B; Zünd G; Turina M
    Perfusion; 2000 Jan; 15(1):77-83. PubMed ID: 10676871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compact centrifugal blood pump for extracorporeal circulation: design and performance.
    Tanaka S; Yamamoto S; Yamakoshi K; Kamiya A
    J Biomech Eng; 1987 Aug; 109(3):272-8. PubMed ID: 3657117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro study of hemolysis induced by flow-regulated and pressure-dependent flow pumps.
    Gille JP; Stahl RL
    Med Prog Technol; 1976 Apr; 3(4):169-73. PubMed ID: 934039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of pressure and flow on hemolysis caused by Bio-Medicus centrifugal pumps and roller pumps. Guidelines for choosing a blood pump.
    Tamari Y; Lee-Sensiba K; Leonard EF; Parnell V; Tortolani AJ
    J Thorac Cardiovasc Surg; 1993 Dec; 106(6):997-1007. PubMed ID: 8246582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of a nonocclusive pressure-regulated blood roller pump.
    Durandy Y
    Artif Organs; 2013 Jan; 37(1):97-100. PubMed ID: 23305578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-occlusive condition with the Better-Header roller pump: impacts of flow dynamics and hemolysis.
    Tayama E; Teshima H; Takaseya T; Fukunaga S; Tayama K; Hayashida N; Akashi H; Kawara T; Aoyagi S
    Ann Thorac Cardiovasc Surg; 2004 Dec; 10(6):357-61. PubMed ID: 15658908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic performance and heat generation by centrifugal pumps.
    Ganushchak Y; van Marken Lichtenbelt W; van der Nagel T; de Jong DS
    Perfusion; 2006 Nov; 21(6):373-9. PubMed ID: 17312862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral blood pump: conception, development and clinical application of the original project.
    Dinkhuysen JJ; de Andrade AJ; Manrique R; Saito CS; Leme J; Biscegli F
    Rev Bras Cir Cardiovasc; 2007; 22(2):224-34. PubMed ID: 17992328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemolysis generation from a novel, linear positive displacement blood pump for cardiopulmonary bypass on a six kilogram piglet: a preliminary report.
    Lawson DS; Eilers D; Osorio Lujan S; Bortot M; Jaggers J
    Perfusion; 2017 May; 32(4):264-268. PubMed ID: 27856841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo testing of a novel blood pump for short-term extracorporeal life support.
    Teman NR; Demos DS; Bryner BS; Faliks B; Jahangir EM; Mazur DE; Rojas-Pena A; Bartlett RH; Haft JW
    Ann Thorac Surg; 2014 Jul; 98(1):97-102. PubMed ID: 24856794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an axial flow blood pump LVAS.
    Butler KC; Maher TR; Borovetz HS; Kormos RL; Antaki JF; Kameneva M; Griffith BP; Zerbe T; Schaffer FD
    ASAIO J; 1992; 38(3):M296-300. PubMed ID: 1457869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrifugal pump performance during low-flow extracorporeal CO2 removal; safety considerations.
    Simons AP; Martens EG; Ganushchak YM; Weerwind PW
    Perfusion; 2015 Jan; 30(1):17-23. PubMed ID: 24919405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of hemolytic properties of different shapes of occlusion of blood sac in occlusive-type pulsatile blood pump.
    Choi H; Min BG; Won YS
    Artif Organs; 2008 Feb; 32(2):160-6. PubMed ID: 18269354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of stationary guiding vanes on improvement of the washout behind the rotor in centrifugal blood pumps.
    Schima H; Huber L; Melvin D; Trubel W; Prodinger A; Losert U; Thoma H; Wolner E
    ASAIO J; 1992; 38(3):M220-4. PubMed ID: 1457852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the MEDOS/HIA DeltaStream extracorporeal rotary blood pump.
    Göbel C; Arvand A; Eilers R; Marseille O; Bals C; Meyns B; Flameng W; Rau G; Reul H
    Artif Organs; 2001 May; 25(5):358-65. PubMed ID: 11403664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro testing of a novel blood pump designed for temporary extracorporeal support.
    Spurlock DJ; Ranney DN; Fracz EM; Mazur DE; Bartlet RH; Haft JW
    ASAIO J; 2012; 58(2):109-14. PubMed ID: 22236624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hemolysis test of the five kinds of impeller blood pumps in vitro].
    Li B; Lin C; Jiang Y; Wang J; Chen L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):479-82. PubMed ID: 12557528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests.
    Masuzawa T; Tsukiya T; Endo S; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Miyazoe Y; Ito K; Sawairi T; Konishi Y
    Artif Organs; 1999 Aug; 23(8):757-61. PubMed ID: 10463503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.