BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 1457952)

  • 21. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use.
    Ouseph R; Ward RA
    Am J Kidney Dis; 2001 Feb; 37(2):316-20. PubMed ID: 11157372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?
    Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J
    Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Eloot S; de Vos JY; de Vos F; Hombrouckx R; Verdonck P
    Hemodial Int; 2005 Oct; 9(4):399-408. PubMed ID: 16219061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heparin-coated polyacrylonitrile membrane versus regional citrate anticoagulation: a prospective randomized study of 2 anticoagulation strategies in patients at risk of bleeding.
    Evenepoel P; Dejagere T; Verhamme P; Claes K; Kuypers D; Bammens B; Vanrenterghem Y
    Am J Kidney Dis; 2007 May; 49(5):642-9. PubMed ID: 17472846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in solute removal by two high-flux membranes of nominally similar synthetic polymers.
    Ouseph R; Hutchison CA; Ward RA
    Nephrol Dial Transplant; 2008 May; 23(5):1704-12. PubMed ID: 18156455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disordered breathing patterns during bicarbonate hemodialysis in COPD. Effect of cuprophane versus polysulfone membranes.
    Navarro J; Serrano C; Donna E; Perez GO
    ASAIO J; 1992; 38(4):811-4. PubMed ID: 1450477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved preservation of residual renal function in chronic hemodialysis patients using polysulfone dialyzers.
    McCarthy JT; Jenson BM; Squillace DP; Williams AW
    Am J Kidney Dis; 1997 Apr; 29(4):576-83. PubMed ID: 9100048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determinants of vancomycin clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis.
    Joy MS; Matzke GR; Frye RF; Palevsky PM
    Am J Kidney Dis; 1998 Jun; 31(6):1019-27. PubMed ID: 9631848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dialysate and blood flow dependence of diffusive solute clearance during CVVHD.
    Relton S; Greenberg A; Palevsky PM
    ASAIO J; 1992; 38(3):M691-6. PubMed ID: 1457951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of formaldehyde/bleach reprocessing on in vivo performances of high-efficiency cellulose and high-flux polysulfone dialyzers.
    Murthy BV; Sundaram S; Jaber BL; Perrella C; Meyer KB; Pereira BJ
    J Am Soc Nephrol; 1998 Mar; 9(3):464-72. PubMed ID: 9513910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers.
    Mandolfo S; Malberti F; Imbasciati E; Cogliati P; Gauly A
    Int J Artif Organs; 2003 Feb; 26(2):113-20. PubMed ID: 12653344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clearance of levofloxacin by an in vitro model of continuous venovenous hemodialysis (CVVHD).
    Siewert S; Drewelow B; Mueller SC
    Int J Artif Organs; 2007 Oct; 30(10):889-95. PubMed ID: 17992649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of a reduced inner diameter of hollow fibers in hemodialyzers.
    Ronco C; Brendolan A; Lupi A; Metry G; Levin NW
    Kidney Int; 2000 Aug; 58(2):809-17. PubMed ID: 10916106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of urea clearance in low-efficiency low-flux vs. high-efficiency high-flux dialyzer membrane with reduced blood and dialysate flow: an in vitro analysis.
    Munshi R; Ahmad S
    Hemodial Int; 2014 Jan; 18(1):172-4. PubMed ID: 23714225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solute transport in continuous hemodialysis: a new treatment for acute renal failure.
    Sigler MH; Teehan BP
    Kidney Int; 1987 Oct; 32(4):562-71. PubMed ID: 3430952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extended reuse of polysulfone hemodialysis membranes using citric acid and heat.
    Tonelli M; Dymond C; Gourishankar S; Jindal KK
    ASAIO J; 2004; 50(1):98-101. PubMed ID: 14763499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous venovenous hemodialysis in multiple organ systems failure patients with acute renal failure.
    Fang JT; Chen YC; Tien YC; Huang CC
    Changgeng Yi Xue Za Zhi; 1998 Jun; 21(2):146-51. PubMed ID: 9729647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance.
    Hirano A; Yamamoto K; Matsuda M; Ogawa T; Yakushiji T; Miyasaka T; Sakai K
    Ther Apher Dial; 2011 Feb; 15(1):66-74. PubMed ID: 21272255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of insulin adsorption behavior of dialyzer membranes used in hemodialysis.
    Abe M; Okada K; Ikeda K; Matsumoto S; Soma M; Matsumoto K
    Artif Organs; 2011 Apr; 35(4):398-403. PubMed ID: 21314833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CVVHD treatment with CARPEDIEM: small solute clearance at different blood and dialysate flows with three different surface area filter configurations.
    Lorenzin A; Garzotto F; Alghisi A; Neri M; Galeano D; Aresu S; Pani A; Vidal E; Ricci Z; Murer L; Goldstein SL; Ronco C
    Pediatr Nephrol; 2016 Oct; 31(10):1659-65. PubMed ID: 27139897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.