These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 14580150)

  • 21. [Otoacoustic emissions and recruitment].
    Konopka W; Olszewski J
    Otolaryngol Pol; 2005; 59(5):731-6. PubMed ID: 16471192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Auditory function in normal-hearing, noise-exposed human ears.
    Stamper GC; Johnson TA
    Ear Hear; 2015; 36(2):172-84. PubMed ID: 25350405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of methylprednisolone on acoustic trauma.
    Takahashi K; Kusakari J; Kimura S; Wada T; Hara A
    Acta Otolaryngol; 1996 Mar; 116(2):209-12. PubMed ID: 8725516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term sound conditioning increases distortion product otoacoustic emission amplitudes and decreases olivocochlear efferent reflex strength.
    Peng JH; Tao ZZ; Huang ZW
    Neuroreport; 2007 Jul; 18(11):1167-70. PubMed ID: 17589320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of noise exposure during solitary trumpet playing: immediate impact on distortion-product otoacoustic emissions and long-term implications for hearing.
    Poissant SF; Freyman RL; MacDonald AJ; Nunes HA
    Ear Hear; 2012; 33(4):543-53. PubMed ID: 22531575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of three hours of discotheque music on pure-tone thresholds and distortion product otoacoustic emissions.
    Müller J; Dietrich S; Janssen T
    J Acoust Soc Am; 2010 Oct; 128(4):1853-69. PubMed ID: 20968358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery of distortion-product otoacoustic emissions after a 2-kHz monaural sound-exposure in humans: effects on fine structures.
    Aranda de Toro MA; Ordoñez R; Reuter K; Hammershøi D
    J Acoust Soc Am; 2010 Dec; 128(6):3568-76. PubMed ID: 21218889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short-term effectiveness of medial efferents does not predict susceptibility to temporary threshold shift in the guinea pig.
    Zennaro O; Erre JP; Aran JM; Dauman R
    Acta Otolaryngol; 1998 Sep; 118(5):681-4. PubMed ID: 9840504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model.
    Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ
    JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Curcumin protects against acoustic trauma in the rat cochlea.
    Soyalıç H; Gevrek F; Karaman S
    Int J Pediatr Otorhinolaryngol; 2017 Aug; 99():100-106. PubMed ID: 28688549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of dopamine D2 receptors in the guinea pig cochlea.
    Wang L; Li J; Yu L; Li X
    Acta Otolaryngol; 2014 Jul; 134(7):738-43. PubMed ID: 24807851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protective effects of poly (ADP-ribose) synthase inhibitors in zymosan-activated plasma induced paw edema.
    Cuzzocrea S; Costantino G; Zingarelli B; Caputi AP
    Life Sci; 1999; 65(9):957-64. PubMed ID: 10465355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporary change of compound action potential amplitude after intense sound exposure.
    Homma T; Hasegawa M; Okamoto A; Yokoyama K; Tamura T
    ORL J Otorhinolaryngol Relat Spec; 1994; 56(1):19-23. PubMed ID: 8121679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig.
    Wang J; Dib M; Lenoir M; Vago P; Eybalin M; Hameg A; Pujol R; Puel JL
    Neuroscience; 2002; 111(3):635-48. PubMed ID: 12031350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myocardial ischemic preconditioning in rodents is dependent on poly (ADP-ribose) synthetase.
    Liaudet L; Yang Z; Al-Affar EB; Szabó C
    Mol Med; 2001 Jun; 7(6):406-17. PubMed ID: 11474134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans.
    Müller J; Janssen T; Heppelmann G; Wagner W
    J Acoust Soc Am; 2005 Dec; 118(6):3747-56. PubMed ID: 16419819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery.
    Kujawa SG; Liberman MC
    J Neurophysiol; 1997 Dec; 78(6):3095-106. PubMed ID: 9405529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.