These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14580203)

  • 1. Specific binding of cinnamycin (Ro 09-0198) to phosphatidylethanolamine. Comparison between micellar and membrane environments.
    Machaidze G; Seelig J
    Biochemistry; 2003 Nov; 42(43):12570-6. PubMed ID: 14580203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific binding of Ro 09-0198 (cinnamycin) to phosphatidylethanolamine: a thermodynamic analysis.
    Machaidze G; Ziegler A; Seelig J
    Biochemistry; 2002 Feb; 41(6):1965-71. PubMed ID: 11827543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation.
    Wenk MR; Seelig J
    Biochemistry; 1998 Mar; 37(11):3909-16. PubMed ID: 9521712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻.
    Beck A; Li-Blatter X; Seelig A; Seelig J
    J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies.
    Schwieger C; Blume A
    Biomacromolecules; 2009 Aug; 10(8):2152-61. PubMed ID: 19603784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of octyl-beta-thioglucopyranoside with lipid membranes.
    Wenk MR; Seelig J
    Biophys J; 1997 Nov; 73(5):2565-74. PubMed ID: 9370450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length dependence of the coil <--> beta-sheet transition in a membrane environment.
    Meier M; Seelig J
    J Am Chem Soc; 2008 Jan; 130(3):1017-24. PubMed ID: 18163629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding.
    Arnulphi C; Jin L; Tricerri MA; Jonas A
    Biochemistry; 2004 Sep; 43(38):12258-64. PubMed ID: 15379564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of alpha-and beta-oligoarginine-acids and amides with anionic lipid vesicles: a mechanistic and thermodynamic study.
    Hitz T; Iten R; Gardiner J; Namoto K; Walde P; Seebach D
    Biochemistry; 2006 May; 45(18):5817-29. PubMed ID: 16669625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of insertion and self-association of a transmembrane helix: a lipophobic interaction by phosphatidylethanolamine.
    Yano Y; Yamamoto A; Ogura M; Matsuzaki K
    Biochemistry; 2011 Aug; 50(32):6806-14. PubMed ID: 21749146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and thermodynamic studies of cinnamycin specific-adsorption on PE-Included-Membranes using surface plasmon resonance.
    Lee SR; Park Y; Park JW
    J Biotechnol; 2020 Aug; 320():77-79. PubMed ID: 32593691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phosphatidylcholine/phosphatidylethanolamine composition in cholesteryl ester-micellar substrates on neutral cholesterol esterase activity.
    Chiba T; Uematsu S; Sawamura F; Sugawara M; Tomita I; Kajiyama F; Tomita T
    Anal Biochem; 1999 Mar; 268(2):238-44. PubMed ID: 10075813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. riDOM, a cell penetrating peptide. Interaction with phospholipid bilayers.
    Québatte G; Kitas E; Seelig J
    Biochim Biophys Acta; 2014 Mar; 1838(3):968-77. PubMed ID: 24184424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detergent-phospholipid mixed micelles with a crystalline phospholipid core.
    Funari SS; Nuscher B; Rapp G; Beyer K
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):8938-43. PubMed ID: 11481465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal titration calorimetric study of calcium association to lipid bilayers: influence of the vesicle preparation and composition.
    Arseneault M; Lafleur M
    Chem Phys Lipids; 2006 Jul; 142(1-2):84-93. PubMed ID: 16620798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of inhibitor aliphatic chain in the thermodynamics of inhibitor binding to Escherichia coli enoyl-ACP reductase and the Phe203Leu mutant: a proposed mechanism for drug resistance.
    Protasevich II; Brouillette CG; Snow ME; Dunham S; Rubin JR; Gogliotti R; Siegel K
    Biochemistry; 2004 Oct; 43(42):13380-9. PubMed ID: 15491144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.