BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 14580215)

  • 1. Mechanism of substrate inhibition in Escherichia coli phosphofructokinase.
    Fenton AW; Reinhart GD
    Biochemistry; 2003 Nov; 42(43):12676-81. PubMed ID: 14580215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of substrate contact residues important for the allosteric regulation of phosphofructokinase from Eschericia coli.
    Fenton AW; Paricharttanakul NM; Reinhart GD
    Biochemistry; 2003 Jun; 42(21):6453-9. PubMed ID: 12767227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition.
    Cabrera R; Ambrosio AL; Garratt RC; Guixé V; Babul J
    J Mol Biol; 2008 Nov; 383(3):588-602. PubMed ID: 18762190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disentangling the web of allosteric communication in a homotetramer: heterotropic activation in phosphofructokinase from Escherichia coli.
    Fenton AW; Paricharttanakul NM; Reinhart GD
    Biochemistry; 2004 Nov; 43(44):14104-10. PubMed ID: 15518560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disentangling the web of allosteric communication in a homotetramer: heterotropic inhibition of phosphofructokinase from Bacillus stearothermophilus.
    Ortigosa AD; Kimmel JL; Reinhart GD
    Biochemistry; 2004 Jan; 43(2):577-86. PubMed ID: 14717614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional roles of Cys-238 and Cys-295 in Escherichia coli phosphofructokinase-2.
    Baez M; Rodríguez PH; Babul J; Guixé V
    Biochem J; 2003 Nov; 376(Pt 1):277-83. PubMed ID: 12927023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli.
    Caniuguir A; Cabrera R; Báez M; Vásquez CC; Babul J; Guixé V
    FEBS Lett; 2005 Apr; 579(11):2313-8. PubMed ID: 15848164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member.
    Parducci RE; Cabrera R; Baez M; Guixé V
    Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Failure of a two-state model to describe the influence of phospho(enol)pyruvate on phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1997 Oct; 36(42):12814-22. PubMed ID: 9335538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MgATP and fructose 6-phosphate interactions with phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1992 Nov; 31(46):11510-8. PubMed ID: 1445885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and structural characterization of phosphofructokinase from Lactobacillus bulgaricus.
    Paricharttanakul NM; Ye S; Menefee AL; Javid-Majd F; Sacchettini JC; Reinhart GD
    Biochemistry; 2005 Nov; 44(46):15280-6. PubMed ID: 16285731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupling the MgATP-induced inhibition and aggregation of Escherichia coli phosphofructokinase-2 by C-terminal mutations.
    Baez M; Merino F; Astorga G; Babul J
    FEBS Lett; 2008 Jun; 582(13):1907-12. PubMed ID: 18501195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a single activating allosteric interaction in phosphofructokinase from Escherichia coli.
    Fenton AW; Reinhart GD
    Biochemistry; 2002 Nov; 41(45):13410-6. PubMed ID: 12416986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties.
    Guixé V
    Arch Biochem Biophys; 2000 Apr; 376(2):313-9. PubMed ID: 10775417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of MgATP binding in a tryptophan-shift mutant of phosphofructokinase from Bacillus stearothermophilus.
    Riley-Lovingshimer MR; Reinhart GD
    Arch Biochem Biophys; 2005 Apr; 436(1):178-86. PubMed ID: 15752723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope partitioning with Ascaris suum phosphofructokinase is consistent with an ordered kinetic mechanism.
    Gibson GE; Harris BG; Cook PF
    Biochemistry; 1996 Apr; 35(17):5451-7. PubMed ID: 8611535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of C-terminal motifs responsible for transmission of inhibition by ATP of mammalian phosphofructokinase, and their contribution to other allosteric effects.
    Martínez-Costa OH; Hermida C; Sánchez-Martínez C; Santamaría B; Aragón JJ
    Biochem J; 2004 Jan; 377(Pt 1):77-84. PubMed ID: 12974670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MgATP-dependent activation by phosphoenolpyruvate of the E187A mutant of Escherichia coli phosphofructokinase.
    Pham AS; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4150-8. PubMed ID: 11300796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disentangling the web of allosteric communication in a homotetramer: heterotropic inhibition in phosphofructokinase from Escherichia coli.
    Fenton AW; Reinhart GD
    Biochemistry; 2009 Dec; 48(51):12323-8. PubMed ID: 19905012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An essential methionine residue involved in substrate binding by phosphofructokinases.
    Wang X; Deng Z; Kemp RG
    Biochem Biophys Res Commun; 1998 Sep; 250(2):466-8. PubMed ID: 9753654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.