These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14580216)

  • 1. Mutagenesis of the conserved active-site tyrosine changes a retaining sialidase into an inverting sialidase.
    Watson JN; Dookhun V; Borgford TJ; Bennet AJ
    Biochemistry; 2003 Nov; 42(43):12682-90. PubMed ID: 14580216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and mechanism of action of an inverting mutant sialidase.
    Newstead S; Watson JN; Knoll TL; Bennet AJ; Taylor G
    Biochemistry; 2005 Jun; 44(25):9117-22. PubMed ID: 15966735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two nucleophilic mutants of the Micromonospora viridifaciens sialidase operate with retention of configuration by two different mechanisms.
    Watson JN; Newstead S; Narine AA; Taylor G; Bennet AJ
    Chembiochem; 2005 Nov; 6(11):1999-2004. PubMed ID: 16206228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic requirements for the efficient enzyme-catalyzed hydrolysis of thiosialosides.
    Narine AA; Watson JN; Bennet AJ
    Biochemistry; 2006 Aug; 45(30):9319-26. PubMed ID: 16866378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brønsted analysis of an enzyme-catalyzed pseudo-deglycosylation reaction: mechanism of desialylation in sialidases.
    Shidmoossavee FS; Cheng L; Watson JN; Bennet AJ
    Biochemistry; 2010 Aug; 49(30):6473-84. PubMed ID: 20575524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the active site aspartic acid to catalysis in the bacterial neuraminidase from Micromonospora viridifaciens.
    Watson JN; Newstead S; Dookhun V; Taylor G; Bennet AJ
    FEBS Lett; 2004 Nov; 577(1-2):265-9. PubMed ID: 15527797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrolase and transferase activity of an inverting mutant sialidase using non-natural beta-sialoside substrates.
    Watson JN; Indurugalla D; Cheng LL; Narine AA; Bennet AJ
    Biochemistry; 2006 Nov; 45(44):13264-75. PubMed ID: 17073447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial and viral sialidases: contribution of the conserved active site glutamate to catalysis.
    Chan J; Watson JN; Lu A; Cerda VC; Borgford TJ; Bennet AJ
    Biochemistry; 2012 Jan; 51(1):433-41. PubMed ID: 22133027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi.
    Zechel DL; Reid SP; Stoll D; Nashiru O; Warren RA; Withers SG
    Biochemistry; 2003 Jun; 42(23):7195-204. PubMed ID: 12795616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of essential residues of human alpha-L-fucosidase and tests of its mechanism.
    Liu SW; Chen CS; Chang SS; Mong KK; Lin CH; Chang CW; Tang CY; Li YK
    Biochemistry; 2009 Jan; 48(1):110-20. PubMed ID: 19072333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural sialoside analogues for the determination of enzymatic rate constants.
    Indurugalla D; Watson JN; Bennet AJ
    Org Biomol Chem; 2006 Dec; 4(24):4453-9. PubMed ID: 17268638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and structural evaluation of selected active site mutants of the Aspergillus fumigatus KDNase (sialidase).
    Yeung JH; Telford JC; Shidmoossavee FS; Bennet AJ; Taylor GL; Moore MM
    Biochemistry; 2013 Dec; 52(51):9177-86. PubMed ID: 24295366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuraminidase substrate promiscuity permits a mutant Micromonospora viridifaciens enzyme to synthesize artificial carbohydrates.
    Cheng LL; Shidmoossavee FS; Bennet AJ
    Biochemistry; 2014 Jun; 53(24):3982-89. PubMed ID: 24870444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turnover is rate-limited by deglycosylation for Micromonospora viridifaciens sialidase-catalyzed hydrolyses: conformational implications for the Michaelis complex.
    Chan J; Lu A; Bennet AJ
    J Am Chem Soc; 2011 Mar; 133(9):2989-97. PubMed ID: 21322554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational, structural, and kinetic evidence for a dissociative mechanism in the GDP-mannose mannosyl hydrolase reaction.
    Xia Z; Azurmendi HF; Lairson LL; Withers SG; Gabelli SB; Bianchet MA; Amzel LM; Mildvan AS
    Biochemistry; 2005 Jun; 44(25):8989-97. PubMed ID: 15966723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into substrate recognition and catalysis by the human neuraminidase 3 (NEU3) through molecular modeling and site-directed mutagenesis.
    Albohy A; Li MD; Zheng RB; Zou C; Cairo CW
    Glycobiology; 2010 Sep; 20(9):1127-38. PubMed ID: 20511247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes.
    Schwarz A; Brecker L; Nidetzky B
    Biochem J; 2007 May; 403(3):441-9. PubMed ID: 17233628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.