These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
551 related articles for article (PubMed ID: 14580347)
1. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Yik JH; Chen R; Nishimura R; Jennings JL; Link AJ; Zhou Q Mol Cell; 2003 Oct; 12(4):971-82. PubMed ID: 14580347 [TBL] [Abstract][Full Text] [Related]
2. Regulation of polymerase II transcription by 7SK snRNA: two distinct RNA elements direct P-TEFb and HEXIM1 binding. Egloff S; Van Herreweghe E; Kiss T Mol Cell Biol; 2006 Jan; 26(2):630-42. PubMed ID: 16382153 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. Chen R; Yang Z; Zhou Q J Biol Chem; 2004 Feb; 279(6):4153-60. PubMed ID: 14627702 [TBL] [Abstract][Full Text] [Related]
4. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Yik JH; Chen R; Pezda AC; Samford CS; Zhou Q Mol Cell Biol; 2004 Jun; 24(12):5094-105. PubMed ID: 15169877 [TBL] [Abstract][Full Text] [Related]
5. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. Michels AA; Fraldi A; Li Q; Adamson TE; Bonnet F; Nguyen VT; Sedore SC; Price JP; Price DH; Lania L; Bensaude O EMBO J; 2004 Jul; 23(13):2608-19. PubMed ID: 15201869 [TBL] [Abstract][Full Text] [Related]
6. Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription. Liu P; Xiang Y; Fujinaga K; Bartholomeeusen K; Nilson KA; Price DH; Peterlin BM J Biol Chem; 2014 Apr; 289(14):9918-25. PubMed ID: 24515107 [TBL] [Abstract][Full Text] [Related]
7. Interplay between 7SK snRNA and oppositely charged regions in HEXIM1 direct the inhibition of P-TEFb. Barboric M; Kohoutek J; Price JP; Blazek D; Price DH; Peterlin BM EMBO J; 2005 Dec; 24(24):4291-303. PubMed ID: 16362050 [TBL] [Abstract][Full Text] [Related]
8. Compensatory contributions of HEXIM1 and HEXIM2 in maintaining the balance of active and inactive positive transcription elongation factor b complexes for control of transcription. Yik JH; Chen R; Pezda AC; Zhou Q J Biol Chem; 2005 Apr; 280(16):16368-76. PubMed ID: 15713661 [TBL] [Abstract][Full Text] [Related]
9. U30 of 7SK RNA forms a specific photo-cross-link with Hexim1 in the context of both a minimal RNA-binding site and a fully reconstituted 7SK/Hexim1/P-TEFb ribonucleoprotein complex. Bélanger F; Baigude H; Rana TM J Mol Biol; 2009 Mar; 386(4):1094-107. PubMed ID: 19244621 [TBL] [Abstract][Full Text] [Related]
10. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. Bartholomeeusen K; Xiang Y; Fujinaga K; Peterlin BM J Biol Chem; 2012 Oct; 287(43):36609-16. PubMed ID: 22952229 [TBL] [Abstract][Full Text] [Related]
11. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC; Liu H; Rice AP J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073 [TBL] [Abstract][Full Text] [Related]
12. The transcription-dependent dissociation of P-TEFb-HEXIM1-7SK RNA relies upon formation of hnRNP-7SK RNA complexes. Barrandon C; Bonnet F; Nguyen VT; Labas V; Bensaude O Mol Cell Biol; 2007 Oct; 27(20):6996-7006. PubMed ID: 17709395 [TBL] [Abstract][Full Text] [Related]
13. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Barboric M; Yik JH; Czudnochowski N; Yang Z; Chen R; Contreras X; Geyer M; Matija Peterlin B; Zhou Q Nucleic Acids Res; 2007; 35(6):2003-12. PubMed ID: 17341462 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. Li Q; Price JP; Byers SA; Cheng D; Peng J; Price DH J Biol Chem; 2005 Aug; 280(31):28819-26. PubMed ID: 15965233 [TBL] [Abstract][Full Text] [Related]
15. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. Muniz L; Egloff S; Ughy B; Jády BE; Kiss T PLoS Pathog; 2010 Oct; 6(10):e1001152. PubMed ID: 20976203 [TBL] [Abstract][Full Text] [Related]
16. Oligomerization of HEXIM1 via 7SK snRNA and coiled-coil region directs the inhibition of P-TEFb. Blazek D; Barboric M; Kohoutek J; Oven I; Peterlin BM Nucleic Acids Res; 2005; 33(22):7000-10. PubMed ID: 16377779 [TBL] [Abstract][Full Text] [Related]
17. HEXIM2, a HEXIM1-related protein, regulates positive transcription elongation factor b through association with 7SK. Byers SA; Price JP; Cooper JJ; Li Q; Price DH J Biol Chem; 2005 Apr; 280(16):16360-7. PubMed ID: 15713662 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. Krueger BJ; Varzavand K; Cooper JJ; Price DH PLoS One; 2010 Aug; 5(8):e12335. PubMed ID: 20808803 [TBL] [Abstract][Full Text] [Related]
19. HMBA releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription. Contreras X; Barboric M; Lenasi T; Peterlin BM PLoS Pathog; 2007 Oct; 3(10):1459-69. PubMed ID: 17937499 [TBL] [Abstract][Full Text] [Related]
20. de novo MEPCE nonsense variant associated with a neurodevelopmental disorder causes disintegration of 7SK snRNP and enhanced RNA polymerase II activation. Schneeberger PE; Bierhals T; Neu A; Hempel M; Kutsche K Sci Rep; 2019 Aug; 9(1):12516. PubMed ID: 31467394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]