BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14580914)

  • 1. Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility.
    Zhu H; Ji J; Shen J
    Biomaterials; 2004 Jan; 25(1):109-17. PubMed ID: 14580914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules.
    Zhu H; Ji J; Tan Q; Barbosa MA; Shen J
    Biomacromolecules; 2003; 4(2):378-86. PubMed ID: 12625735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface tailoring of poly(DL-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth.
    Ji J; Zhu H; Shen J
    Biomaterials; 2004 May; 25(10):1859-67. PubMed ID: 14738850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoblast growth promotion by protein electrostatic self-assembly on biodegradable poly(lactide).
    Zhu H; Ji J; Shen J
    J Biomater Sci Polym Ed; 2005; 16(6):761-74. PubMed ID: 16028595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold.
    Zhu H; Ji J; Shen J
    Biomacromolecules; 2004; 5(5):1933-9. PubMed ID: 15360308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth.
    Zhu H; Ji J; Barbosa MA; Shen J
    J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):159-65. PubMed ID: 15368240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineering of poly(D,L-lactic acid) by entrapment of chitosan-based derivatives for the promotion of chondrogenesis.
    Zhu H; Ji J; Lin R; Gao C; Feng L; Shen J
    J Biomed Mater Res; 2002 Dec; 62(4):532-9. PubMed ID: 12221701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface engineering of poly(DL-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis.
    Zhu H; Ji J; Lin R; Gao C; Feng L; Shen J
    Biomaterials; 2002 Aug; 23(15):3141-8. PubMed ID: 12102185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes.
    Zheng Z; Bei FF; Tian HL; Chen GQ
    Biomaterials; 2005 Jun; 26(17):3537-48. PubMed ID: 15621244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(L-lactic acid) porous scaffolds to enhance their chondrogenesis.
    Gong Y; Zhu Y; Liu Y; Ma Z; Gao C; Shen J
    Acta Biomater; 2007 Sep; 3(5):677-85. PubMed ID: 17576103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions.
    Baba Ismail YM; Ferreira AM; Bretcanu O; Dalgarno K; El Haj AJ
    Colloids Surf B Biointerfaces; 2017 Nov; 159():445-453. PubMed ID: 28837894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of cellular affinity and compatibility to biodegradable polyesters and Type-II collagen-modified scaffolds using immortalized rat chondrocytes.
    Hsu SH; Tsai CL; Tang CM
    Artif Organs; 2002 Jul; 26(7):647-58. PubMed ID: 12081523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility.
    Ma Z; Gao C; Gong Y; Ji J; Shen J
    J Biomed Mater Res; 2002; 63(6):838-47. PubMed ID: 12418032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface engineering of poly(D,L-lactic acid) by entrapment of soluble eggshell membrane protein.
    Lu JW; Li Q; Qi QL; Guo ZX; Yu J
    J Biomed Mater Res A; 2009 Dec; 91(3):701-7. PubMed ID: 19048638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells.
    Ding Z; Chen J; Gao S; Chang J; Zhang J; Kang ET
    Biomaterials; 2004 Mar; 25(6):1059-67. PubMed ID: 14615171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of poly(L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin.
    Lin Y; Wang L; Zhang P; Wang X; Chen X; Jing X; Su Z
    Acta Biomater; 2006 Mar; 2(2):155-64. PubMed ID: 16701873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel nano-rough polymers for cartilage tissue engineering.
    Balasundaram G; Storey DM; Webster TJ
    Int J Nanomedicine; 2014; 9():1845-53. PubMed ID: 24790427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study.
    Wang X; Grogan SP; Rieser F; Winkelmann V; Maquet V; Berge ML; Mainil-Varlet P
    Biomaterials; 2004 Aug; 25(17):3681-8. PubMed ID: 15020143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of poly-L-lactic acid (PLLA) membrane by grafting acrylamide: an effective way to improve cytocompatibility for chondrocytes.
    Ma Z; Gao C; Shen J
    J Biomater Sci Polym Ed; 2003; 14(1):13-25. PubMed ID: 12635768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification.
    Boura C; Menu P; Payan E; Picart C; Voegel JC; Muller S; Stoltz JF
    Biomaterials; 2003 Sep; 24(20):3521-30. PubMed ID: 12809781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.