These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 14580937)

  • 1. Reduced sodium appetite and increased oxytocin gene expression in mutant mice lacking beta-endorphin.
    Franchini LF; Rubinstein M; Vivas L
    Neuroscience; 2003; 121(4):875-81. PubMed ID: 14580937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxytocinergic and serotonergic systems involvement in sodium intake regulation: satiety or hypertonicity markers?
    Godino A; De Luca LA; Antunes-Rodrigues J; Vivas L
    Am J Physiol Regul Integr Comp Physiol; 2007 Sep; 293(3):R1027-36. PubMed ID: 17567719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voluntary sodium ingestion in wild-type and oxytocin knockout mice.
    Vollmer RR; Cai HM; Miedlar JA; Amico JA
    Clin Exp Hypertens; 2013; 35(3):167-74. PubMed ID: 22784207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased expression of magnocellular vasopressin mRNA in rats with deoxycorticosterone-acetate induced salt appetite.
    Grillo CA; Saravia F; Ferrini M; Piroli G; Roig P; García SI; de Kloet ER; De Nicola AF
    Neuroendocrinology; 1998 Aug; 68(2):105-15. PubMed ID: 9705577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Endorphinergic system involvement in the inhibitory action of clonidine on induced sodium appetite.
    Caeiro XE; Godino A; Vivas L
    Regul Pept; 2011 Apr; 167(2-3):222-6. PubMed ID: 21324347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium ingestion in oxytocin knockout mice.
    Vollmer RR; Li X; Karam JR; Amico JA
    Exp Neurol; 2006 Dec; 202(2):441-8. PubMed ID: 16930592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early oxytocin inhibition of salt intake after furosemide treatment in rats?
    Core SL; Curtis KS
    Physiol Behav; 2017 May; 173():34-41. PubMed ID: 28131863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular, immunohistochemical, and pharmacological evidence of oxytocin's role as inhibitor of carbohydrate but not fat intake.
    Olszewski PK; Klockars A; Olszewska AM; Fredriksson R; Schiöth HB; Levine AS
    Endocrinology; 2010 Oct; 151(10):4736-44. PubMed ID: 20685878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estrogen effects on oxytocinergic pathways that regulate food intake.
    Sloan DK; Spencer DS; Curtis KS
    Horm Behav; 2018 Sep; 105():128-137. PubMed ID: 30118729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-endorphin involvement in the regulatory response to body sodium overload.
    Caeiro X; Hansen C; García N; Vivas L
    Neuroscience; 2006 Oct; 142(2):557-65. PubMed ID: 16887279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothalamic oxytocin neurons modulate hypophagic effect induced by adrenalectomy.
    Uchoa ET; Mendes da Silva LE; de Castro M; Antunes-Rodrigues J; Elias LL
    Horm Behav; 2009 Nov; 56(5):532-8. PubMed ID: 19778539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central oxytocin inhibition of salt appetite in rats: evidence for differential sensing of plasma sodium and osmolality.
    Blackburn RE; Samson WK; Fulton RJ; Stricker EM; Verbalis JG
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10380-4. PubMed ID: 8234302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histaminergic activation of the hypothalamic-pituitary-adrenal axis.
    Kjaer A; Larsen PJ; Knigge U; Warberg J
    Endocrinology; 1994 Sep; 135(3):1171-7. PubMed ID: 8070360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hypothalamic paraventricular nucleus: relationship to brain and pituitary pools of vasopressin and oxytocin as compared to dynorphin, beta-endorphin and related opioid peptides in the rat.
    Millan MH; Millan MJ; Herz A
    Neuroendocrinology; 1984 Feb; 38(2):108-16. PubMed ID: 6144057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain osmo-sodium sensitive channels and the onset of sodium appetite.
    Porcari CY; Debarba LK; Amigone JL; Caeiro XE; Reis LC; Cunha TM; Mecawi AS; Elias LL; Antunes-Rodrigues J; Vivas L; Godino A
    Horm Behav; 2020 Feb; 118():104658. PubMed ID: 31874139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.
    Lu B; Yang XJ; Chen K; Yang DJ; Yan JQ
    Neuroscience; 2009 Dec; 164(3):1303-11. PubMed ID: 19733634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central oxytocin inhibition of angiotensin-induced salt appetite in rats.
    Blackburn RE; Demko AD; Hoffman GE; Stricker EM; Verbalis JG
    Am J Physiol; 1992 Dec; 263(6 Pt 2):R1347-53. PubMed ID: 1336319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central inhibition of salt appetite by oxytocin in rats.
    Stricker EM; Verbalis JG
    Regul Pept; 1996 Oct; 66(1-2):83-5. PubMed ID: 8899898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypertension and exercise training differentially affect oxytocin and oxytocin receptor expression in the brain.
    Martins AS; Crescenzi A; Stern JE; Bordin S; Michelini LC
    Hypertension; 2005 Oct; 46(4):1004-9. PubMed ID: 16157794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral chemoreceptors mediate training-induced plasticity in paraventricular nucleus pre-autonomic oxytocinergic neurons.
    Cruz JC; Cavalleri MT; Ceroni A; Michelini LC
    Exp Physiol; 2013 Feb; 98(2):386-96. PubMed ID: 22872656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.