These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 14581189)

  • 1. Conferring thermostability to mesophilic proteins through optimized electrostatic surfaces.
    Torrez M; Schultehenrich M; Livesay DR
    Biophys J; 2003 Nov; 85(5):2845-53. PubMed ID: 14581189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D; Mueller U; Heinemann U; Schmid FX
    Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic contributions to the stability of a thermophilic cold shock protein.
    Zhou HX; Dong F
    Biophys J; 2003 Apr; 84(4):2216-22. PubMed ID: 12668430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of ionic strength on protein stability: the cold shock protein family.
    Dominy BN; Perl D; Schmid FX; Brooks CL
    J Mol Biol; 2002 May; 319(2):541-54. PubMed ID: 12051927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of the charged residues mutation S48E/N62H on the thermostability and unfolding behavior of cold shock protein: insights from molecular dynamics simulation with Gō model.
    Su JG; Han XM; Zhao SX; Hou YX; Li XY; Qi LS; Wang JH
    J Mol Model; 2016 Apr; 22(4):91. PubMed ID: 27021210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability.
    Delbrück H; Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2001 Oct; 313(2):359-69. PubMed ID: 11800562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions.
    Makhatadze GI; Loladze VV; Gribenko AV; Lopez MM
    J Mol Biol; 2004 Feb; 336(4):929-42. PubMed ID: 15095870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability.
    Usher KC; de la Cruz AF; Dahlquist FW; Swanson RV; Simon MI; Remington SJ
    Protein Sci; 1998 Feb; 7(2):403-12. PubMed ID: 9521117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative molecular dynamics simulation studies for determining factors contributing to the thermostability of chemotaxis protein "CheY".
    Paul M; Hazra M; Barman A; Hazra S
    J Biomol Struct Dyn; 2014; 32(6):928-49. PubMed ID: 23796004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
    Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN
    Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Favourable native-like helical local interactions can accelerate protein folding.
    Viguera AR; Villegas V; Avilés FX; Serrano L
    Fold Des; 1997; 2(1):23-33. PubMed ID: 9080196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Electrostatics and Folding Kinetics on the Thermostability of Homologous Cold Shock Proteins.
    Ferreira PHB; Freitas FC; McCully ME; Slade GG; de Oliveira RJ
    J Chem Inf Model; 2020 Feb; 60(2):546-561. PubMed ID: 31910002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine-Based Site-Directed Mutagenesis Increased Rigid β-Sheet Structure and Thermostability of Mesophilic 1,3-1,4-β-Glucanase.
    Niu C; Zhu L; Zhu P; Li Q
    J Agric Food Chem; 2015 Jun; 63(21):5249-56. PubMed ID: 25953154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.