BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 14581207)

  • 1. Creating biological membranes on the micron scale: forming patterned lipid bilayers using a polymer lift-off technique.
    Orth RN; Kameoka J; Zipfel WR; Ilic B; Webb WW; Clark TG; Craighead HG
    Biophys J; 2003 Nov; 85(5):3066-73. PubMed ID: 14581207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the hybrid bilayer membrane method for immobilization of avidin on quartz crystal microbalance.
    Mun S; Choi SJ
    Biosens Bioelectron; 2009 Apr; 24(8):2522-7. PubMed ID: 19201593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of supported membranes on topographically patterned polymeric elastomers and their applications to microcontact printing.
    Sapuri-Butti AR; Butti RC; Parikh AN
    Langmuir; 2007 Dec; 23(25):12645-54. PubMed ID: 17979304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avidin-biotin interactions at vesicle surfaces: adsorption and binding, cross-bridge formation, and lateral interactions.
    Noppl-Simson DA; Needham D
    Biophys J; 1996 Mar; 70(3):1391-401. PubMed ID: 8785294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence modulation sensing of positively and negatively charged proteins on lipid bilayers.
    Robison AD; Huang D; Jung H; Cremer PS
    Biointerphases; 2013 Dec; 8(1):1. PubMed ID: 24706114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid Bilayers Are Long-Lived on Solvent Cleaned Plasma-Oxidized poly(dimethyl)siloxane (ox-PDMS).
    Faysal KM; Park JS; Nguyen J; Garcia L; Subramaniam AB
    PLoS One; 2017; 12(1):e0169487. PubMed ID: 28052115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces.
    Zhang Y; Wang L; Wang X; Qi G; Han X
    Chemistry; 2013 Jul; 19(27):9059-63. PubMed ID: 23695862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotin-containing phospholipid vesicle layer formed on self-assembled monolayer of a saccharide-terminated alkyl disulfide for surface plasmon resonance biosensing.
    Ishizuka-Katsura Y; Wazawa T; Ban T; Morigaki K; Aoyama S
    J Biosci Bioeng; 2008 May; 105(5):527-35. PubMed ID: 18558345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supported bilayer lipid membrane arrays on photopatterned self-assembled monolayers.
    Han X; Pradeep SN; Critchley K; Sheikh K; Bushby RJ; Evans SD
    Chemistry; 2007; 13(28):7957-64. PubMed ID: 17611951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supported lipid bilayers on biocompatible polysaccharide multilayers.
    Mulligan K; Jakubek ZJ; Johnston LJ
    Langmuir; 2011 Dec; 27(23):14352-9. PubMed ID: 22013993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of support corrugation on silica xerogel--supported phase-separated lipid bilayers.
    Goksu EI; Nellis BA; Lin WC; Satcher JH; Groves JT; Risbud SH; Longo ML
    Langmuir; 2009 Apr; 25(6):3713-7. PubMed ID: 19708250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microarrays of phospholipid bilayers generated by inkjet printing.
    Yamada M; Imaishi H; Morigaki K
    Langmuir; 2013 May; 29(21):6404-8. PubMed ID: 23627772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.
    Morigaki K; Mizutani K; Saito M; Okazaki T; Nakajima Y; Tatsu Y; Imaishi H
    Langmuir; 2013 Feb; 29(8):2722-30. PubMed ID: 23347422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithographically defined macroscale modulation of lateral fluidity and phase separation realized via patterned nanoporous silica-supported phospholipid bilayers.
    Kendall EL; Ngassam VN; Gilmore SF; Brinker CJ; Parikh AN
    J Am Chem Soc; 2013 Oct; 135(42):15718-21. PubMed ID: 24111800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing immobilization of avidin on surface-modified magnetic nanoparticles: characterization and application of protein-immobilized nanoparticles.
    Yang T; Sun S; Ma M; Lin Q; Zhang L; Li Y; Luo F
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):2023-34. PubMed ID: 26224655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subnanometer actuation of a tethered lipid bilayer monitored with fluorescence resonance energy transfer.
    Kunding A; Stamou D
    J Am Chem Soc; 2006 Sep; 128(35):11328-9. PubMed ID: 16939236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arraying of intact liposomes into chemically functionalized microwells.
    Kalyankar ND; Sharma MK; Vaidya SV; Calhoun D; Maldarelli C; Couzis A; Gilchrist L
    Langmuir; 2006 Jun; 22(12):5403-11. PubMed ID: 16732670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.