These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 14581217)
21. Hexanol-induced order-disorder transitions in lamellar self-assembling aggregates of bacteriochlorophyll c in Chlorobium tepidum chlorosomes. Arellano JB; Torkkeli M; Tuma R; Laurinmäki P; Melø TB; Ikonen TP; Butcher SJ; Serimaa RE; Psencík J Langmuir; 2008 Mar; 24(5):2035-41. PubMed ID: 18197717 [TBL] [Abstract][Full Text] [Related]
22. Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria. Novoderezhkin VI; Razjivin AP Biophys J; 1995 Mar; 68(3):1089-100. PubMed ID: 7756528 [TBL] [Abstract][Full Text] [Related]
23. Estimation of the bacteriochlorophyll c oligomerisation extent in Chloroflexus aurantiacus chlorosomes by very low-frequency vibrations of the pigment molecules: A new approach. Yakovlev AG; Taisova AS; Shuvalov VA; Fetisova ZG Biophys Chem; 2018 Sep; 240():1-8. PubMed ID: 29857169 [TBL] [Abstract][Full Text] [Related]
24. Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Egawa A; Fujiwara T; Mizoguchi T; Kakitani Y; Koyama Y; Akutsu H Proc Natl Acad Sci U S A; 2007 Jan; 104(3):790-5. PubMed ID: 17215361 [TBL] [Abstract][Full Text] [Related]
25. Pressure-induced red shift and broadening of the Qy absorption of main light-harvesting antennae chlorosomes from green photosynthetic bacteria and their dependency upon alkyl substituents of the composite bacteriochlorophylls. Mizoguchi T; Kim TY; Sawamura S; Tamiaki H J Phys Chem B; 2008 Dec; 112(51):16759-65. PubMed ID: 19367895 [TBL] [Abstract][Full Text] [Related]
26. Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8-293 K fluorescence spectroscopy. Mauring K; Novoderezhkin V; Taisova A; Fetisova Z FEBS Lett; 1999 Aug; 456(2):239-42. PubMed ID: 10456316 [TBL] [Abstract][Full Text] [Related]
27. Construction of chlorosomal rod self-aggregates in the solid state on any substrates from synthetic chlorophyll derivatives possessing an oligomethylene chain at the 17-propionate residue. Shoji S; Hashishin T; Tamiaki H Chemistry; 2012 Oct; 18(42):13331-41. PubMed ID: 23008218 [TBL] [Abstract][Full Text] [Related]
28. High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum. Wu HM; Rätsep M; Young CS; Jankowiak R; Blankenship RE; Small GJ Biophys J; 2000 Sep; 79(3):1561-72. PubMed ID: 10969017 [TBL] [Abstract][Full Text] [Related]
29. Comparative study of the energy transfer kinetics in artificial BChl e aggregates containing a BChl a acceptor and BChl e-containing chlorosomes of Chlorobium phaeobacteroides. Zietz B; Prokhorenko VI; Holzwarth AR; Gillbro T J Phys Chem B; 2006 Jan; 110(3):1388-93. PubMed ID: 16471689 [TBL] [Abstract][Full Text] [Related]
30. [Model of aggregation of pigments in the chlorosomal antenna of the green bacteria Chloroflexus aurantiacus]. Mauring K; Novoderezhkin VI; Taisova AS; Fetisova ZG Mol Biol (Mosk); 2004; 38(2):317-22. PubMed ID: 15125238 [TBL] [Abstract][Full Text] [Related]
31. Spectral heterogeneity in single light-harvesting chlorosomes from green sulfur photosynthetic bacterium chlorobium tepidum. Saga Y; Wazawa T; Mizoguchi T; Ishii Y; Yanagida T; Tamiaki H Photochem Photobiol; 2002 Apr; 75(4):433-6. PubMed ID: 12003135 [TBL] [Abstract][Full Text] [Related]
32. Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. Linnanto J; Korppi-Tommola J Phys Chem Chem Phys; 2006 Feb; 8(6):663-87. PubMed ID: 16482307 [TBL] [Abstract][Full Text] [Related]
33. Pigment organization and exciton dynamics in the B808-866 antenna of the green bacterium Chloroflexus aurantiacus. Novoderezhkin V; Taisova A; Fetisova Z Biochem Mol Biol Int; 1998 Jun; 45(2):355-62. PubMed ID: 9678257 [TBL] [Abstract][Full Text] [Related]
34. Bacteriochlorophyll aggregates self-assembled on functionalized gold nanorod cores as mimics of photosynthetic chlorosomal antennae: a single molecule study. Furumaki S; Vacha F; Hirata S; Vacha M ACS Nano; 2014 Mar; 8(3):2176-82. PubMed ID: 24559170 [TBL] [Abstract][Full Text] [Related]
35. Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Vassilieva EV; Stirewalt VL; Jakobs CU; Frigaard NU; Inoue-Sakamoto K; Baker MA; Sotak A; Bryant DA Biochemistry; 2002 Apr; 41(13):4358-70. PubMed ID: 11914082 [TBL] [Abstract][Full Text] [Related]
36. Theory of Anisotropic Circular Dichroism of Excitonically Coupled Systems: Application to the Baseplate of Green Sulfur Bacteria. Lindorfer D; Renger T J Phys Chem B; 2018 Mar; 122(10):2747-2756. PubMed ID: 29420888 [TBL] [Abstract][Full Text] [Related]
37. Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. Furumaki S; Vacha F; Habuchi S; Tsukatani Y; Bryant DA; Vacha M J Am Chem Soc; 2011 May; 133(17):6703-10. PubMed ID: 21476570 [TBL] [Abstract][Full Text] [Related]
38. Femtosecond Exciton Relaxation in Chlorosomes of the Photosynthetic Green Bacterium Chloroflexus aurantiacus. Yakovlev AG; Taisova AS; Fetisova ZG Biochemistry (Mosc); 2023 May; 88(5):704-715. PubMed ID: 37331716 [TBL] [Abstract][Full Text] [Related]
39. Structure of bacteriochlorophyll aggregates in chlorosomes of green bacteria: a spectral hole burning study. Novoderezhkin VI; Fetisova ZG Biochem Mol Biol Int; 1996 Oct; 40(2):243-52. PubMed ID: 8896746 [TBL] [Abstract][Full Text] [Related]
40. A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Pedersen MØ; Linnanto J; Frigaard NU; Nielsen NC; Miller M Photosynth Res; 2010 Jun; 104(2-3):233-43. PubMed ID: 20077007 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]