BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 14581224)

  • 1. Amino acid substitutions in a long flexible sequence influence thermodynamics and internal dynamic properties of winged helix protein genesis and its DNA complex.
    Yan H; Liao X
    Biophys J; 2003 Nov; 85(5):3248-54. PubMed ID: 14581224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex.
    Jin C; Marsden I; Chen X; Liao X
    J Mol Biol; 1999 Jun; 289(4):683-90. PubMed ID: 10369754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dissociation rate of a winged helix protein-DNA complex is influenced by non-DNA contact residues.
    Shiyanova T; Liao X
    Arch Biochem Biophys; 1999 Feb; 362(2):356-62. PubMed ID: 9989946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes in the region directly adjacent to the DNA-binding helix highlight a possible mechanism to explain the observed changes in the sequence-specific binding of winged helix proteins.
    Marsden I; Jin C; Liao X
    J Mol Biol; 1998 May; 278(2):293-9. PubMed ID: 9571051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence specific collective motions in a winged helix DNA binding domain detected by 15N relaxation NMR.
    Jin C; Marsden I; Chen X; Liao X
    Biochemistry; 1998 Apr; 37(17):6179-87. PubMed ID: 9558357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure comparison of two conserved HNF-3/fkh proteins HFH-1 and genesis indicates the existence of folding differences in their complexes with a DNA binding sequence.
    Sheng W; Rance M; Liao X
    Biochemistry; 2002 Mar; 41(10):3286-93. PubMed ID: 11876636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone dynamics of a winged helix protein and its DNA complex at different temperatures: changes of internal motions in genesis upon binding to DNA.
    Jin C; Liao X
    J Mol Biol; 1999 Sep; 292(3):641-51. PubMed ID: 10497028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium unfolding of dimeric and engineered monomeric forms of lambda Cro (F58W) repressor and the effect of added salts: evidence for the formation of folded monomer induced by sodium perchlorate.
    Maity H; Mossing MC; Eftink MR
    Arch Biochem Biophys; 2005 Feb; 434(1):93-107. PubMed ID: 15629113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-dependent folding and stability of nuclear hormone receptor DNA-binding domains.
    Low LY; Hernández H; Robinson CV; O'Brien R; Grossmann JG; Ladbury JE; Luisi B
    J Mol Biol; 2002 May; 319(1):87-106. PubMed ID: 12051939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc.
    Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K
    J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M urea.
    Pervushin K; Wider G; Iwai H; Wüthrich K
    Biochemistry; 2004 Nov; 43(44):13937-43. PubMed ID: 15518542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the DNA binding specificity of winged helix proteins is mediated by a structural change in the amino acid sequence adjacent to the principal DNA binding helix.
    Marsden I; Chen Y; Jin C; Liao X
    Biochemistry; 1997 Oct; 36(43):13248-55. PubMed ID: 9341214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR structure and functional studies of the Mu repressor DNA-binding domain.
    Ilangovan U; Wojciak JM; Connolly KM; Clubb RT
    Biochemistry; 1999 Jun; 38(26):8367-76. PubMed ID: 10387082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of alpha-helix N-capping motif in stabilization of betabetaalpha fold.
    Koscielska-Kasprzak K; Cierpicki T; Otlewski J
    Protein Sci; 2003 Jun; 12(6):1283-9. PubMed ID: 12761399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The LEF-1 high-mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA.
    Love JJ; Li X; Chung J; Dyson HJ; Wright PE
    Biochemistry; 2004 Jul; 43(27):8725-34. PubMed ID: 15236581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arc repressor-operator DNA interactions and contribution of Phe10 to binding specificity.
    Dostál L; Misselwitz R; Welfle H
    Biochemistry; 2005 Jun; 44(23):8387-96. PubMed ID: 15938628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning lambda6-85 towards downhill folding at its melting temperature.
    Liu F; Gruebele M
    J Mol Biol; 2007 Jul; 370(3):574-84. PubMed ID: 17532338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.