BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 14581229)

  • 41. Native topology determines force-induced unfolding pathways in globular proteins.
    Klimov DK; Thirumalai D
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7254-9. PubMed ID: 10860990
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complex folding kinetics of a multidomain protein.
    Batey S; Scott KA; Clarke J
    Biophys J; 2006 Mar; 90(6):2120-30. PubMed ID: 16387757
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Further analysis of the role of spectrin repeat motifs in alpha-actinin dimer formation.
    Flood G; Rowe AJ; Critchley DR; Gratzer WB
    Eur Biophys J; 1997; 25(5-6):431-5. PubMed ID: 9188165
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK.
    Montgomery D; Jordan R; McMacken R; Freire E
    J Mol Biol; 1993 Jul; 232(2):680-92. PubMed ID: 8102181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gradual disordering of the native state on a slow two-state folding protein monitored by single-molecule fluorescence spectroscopy and NMR.
    Campos LA; Sadqi M; Liu J; Wang X; English DS; Muñoz V
    J Phys Chem B; 2013 Oct; 117(42):13120-31. PubMed ID: 23796244
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectrin folding versus unfolding reactions and RBC membrane stiffness.
    Zhu Q; Asaro RJ
    Biophys J; 2008 Apr; 94(7):2529-45. PubMed ID: 18065469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alpha-actinin and spectrin structures: an unfolding family story.
    Viel A
    FEBS Lett; 1999 Nov; 460(3):391-4. PubMed ID: 10556504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential scanning calorimetric, circular dichroism, and Fourier transform infrared spectroscopic characterization of the thermal unfolding of xylanase A from Streptomyces lividans.
    Roberge M; Lewis RN; Shareck F; Morosoli R; Kluepfel D; Dupont C; McElhaney RN
    Proteins; 2003 Feb; 50(2):341-54. PubMed ID: 12486727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural cooperativity in spectrin type repeats motifs of dystrophin.
    Saadat L; Pittman L; Menhart N
    Biochim Biophys Acta; 2006 May; 1764(5):943-54. PubMed ID: 16603424
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations.
    Paci E; Karplus M
    J Mol Biol; 1999 May; 288(3):441-59. PubMed ID: 10329153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cooperative folding in a multi-domain protein.
    Batey S; Randles LG; Steward A; Clarke J
    J Mol Biol; 2005 Jun; 349(5):1045-59. PubMed ID: 15913648
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational dynamics of estrogen receptors alpha and beta as revealed by intrinsic tryptophan fluorescence and circular dichroism.
    Nair SK; Thomas TJ; Greenfield NJ; Chen A; He H; Thomas T
    J Mol Endocrinol; 2005 Oct; 35(2):211-23. PubMed ID: 16216903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal denaturation of Escherichia coli thioredoxin studied by hydrogen/deuterium exchange and electrospray ionization mass spectrometry: monitoring a two-state protein unfolding transition.
    Maier CS; Schimerlik MI; Deinzer ML
    Biochemistry; 1999 Jan; 38(3):1136-43. PubMed ID: 9894011
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The folding of spectrin domains II: phi-value analysis of R16.
    Scott KA; Randles LG; Clarke J
    J Mol Biol; 2004 Nov; 344(1):207-21. PubMed ID: 15504412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-molecule protein unfolding and refolding using atomic force microscopy.
    Bornschlögl T; Rief M
    Methods Mol Biol; 2011; 783():233-50. PubMed ID: 21909892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biophysical investigations of engineered polyproteins: implications for force data.
    Rounsevell RW; Steward A; Clarke J
    Biophys J; 2005 Mar; 88(3):2022-9. PubMed ID: 15613637
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measuring biological materials mechanics with atomic force microscopy - Mechanical unfolding of biopolymers.
    Gil-Redondo JC; Weber A; Toca-Herrera JL
    Microsc Res Tech; 2022 Aug; 85(8):3025-3036. PubMed ID: 35502131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical unfolding of an ankyrin repeat protein.
    Serquera D; Lee W; Settanni G; Marszalek PE; Paci E; Itzhaki LS
    Biophys J; 2010 Apr; 98(7):1294-301. PubMed ID: 20371329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical and chemical unfolding of a single protein: a comparison.
    Carrion-Vazquez M; Oberhauser AF; Fowler SB; Marszalek PE; Broedel SE; Clarke J; Fernandez JM
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3694-9. PubMed ID: 10097099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.