BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 14581625)

  • 1. Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana.
    Fukao Y; Hayashi M; Hara-Nishimura I; Nishimura M
    Plant Cell Physiol; 2003 Oct; 44(10):1002-12. PubMed ID: 14581625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental analysis of a putative ATP/ADP carrier protein localized on glyoxysomal membranes during the peroxisome transition in pumpkin cotyledons.
    Fukao Y; Hayashi Y; Mano S; Hayashi M; Nishimura M
    Plant Cell Physiol; 2001 Aug; 42(8):835-41. PubMed ID: 11522909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15 in higher plants.
    Helm M; Lück C; Prestele J; Hierl G; Huesgen PF; Fröhlich T; Arnold GJ; Adamska I; Görg A; Lottspeich F; Gietl C
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11501-6. PubMed ID: 17592111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pumpkin peroxisomal ascorbate peroxidase is localized on peroxisomal membranes and unknown membranous structures.
    Nito K; Yamaguchi K; Kondo M; Hayashi M; Nishimura M
    Plant Cell Physiol; 2001 Jan; 42(1):20-7. PubMed ID: 11158440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of an Arabidopsis acyl-coenzyme a synthetase localized on glyoxysomal membranes.
    Hayashi H; De Bellis L; Hayashi Y; Nito K; Kato A; Hayashi M; Hara-Nishimura I; Nishimura M
    Plant Physiol; 2002 Dec; 130(4):2019-26. PubMed ID: 12481085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant.
    Hayashi Y; Hayashi M; Hayashi H; Hara-Nishimura I; Nishimura M
    Protoplasma; 2001; 218(1-2):83-94. PubMed ID: 11732324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression, and purification of glyoxysomal 3-oxoacyl-CoA thiolase from sunflower cotyledons.
    Schiedel AC; Oeljeklaus S; Minihan P; Dyer JH
    Protein Expr Purif; 2004 Jan; 33(1):25-33. PubMed ID: 14680958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana.
    Kamada T; Nito K; Hayashi H; Mano S; Hayashi M; Nishimura M
    Plant Cell Physiol; 2003 Dec; 44(12):1275-89. PubMed ID: 14701923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyoxysomal acetoacetyl-CoA thiolase and 3-oxoacyl-CoA thiolase from sunflower cotyledons.
    Oeljeklaus S; Fischer K; Gerhardt B
    Planta; 2002 Feb; 214(4):597-607. PubMed ID: 11925043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana.
    Fukao Y; Hayashi M; Nishimura M
    Plant Cell Physiol; 2002 Jul; 43(7):689-96. PubMed ID: 12154131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytosolic aconitase participates in the glyoxylate cycle in etiolated pumpkin cotyledons.
    Hayashi M; De Bellis L; Alpi A; Nishimura M
    Plant Cell Physiol; 1995 Jun; 36(4):669-80. PubMed ID: 7640891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A defect in glyoxysomal fatty acid beta-oxidation reduces jasmonic acid accumulation in Arabidopsis.
    Afitlhile MM; Fukushige H; Nishimura M; Hildebrand DF
    Plant Physiol Biochem; 2005 Jun; 43(6):603-9. PubMed ID: 15979881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of a glyoxysomal citrate synthase that is synthesized as a precursor of higher molecular mass in pumpkin.
    Kato A; Hayashi M; Mori H; Nishimura M
    Plant Mol Biol; 1995 Jan; 27(2):377-90. PubMed ID: 7888626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Import of the peroxisomal targeting signal type 2 protein 3-ketoacyl-coenzyme a thiolase into glyoxysomes.
    Johnson TL; Olsen LJ
    Plant Physiol; 2003 Dec; 133(4):1991-9. PubMed ID: 14630959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between chaperone and protease functions of LON2, and autophagy during the functional transition of peroxisomes.
    Goto-Yamada S; Mano S; Oikawa K; Shibata M; Nishimura M
    Plant Signal Behav; 2014; 9(5):e28838. PubMed ID: 24739336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-repressible receptor protein kinase: a novel photo-regulated gene from Arabidopsis thaliana.
    Deeken R; Kaldenhoff R
    Planta; 1997; 202(4):479-86. PubMed ID: 9265789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbodies (Glyoxysomes and Peroxisomes) in Cucumber Cotyledons: Correlative Biochemical and Ultrastructural Study in Light- and Dark-grown Seedlings.
    Trelease RN; Becker WM; Gruber PJ; Newcomb EH
    Plant Physiol; 1971 Oct; 48(4):461-75. PubMed ID: 16657820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock enhances the amount of prenylated Dnaj protein at membranes of glyoxysomes.
    Preisig-Müller R; Muster G; Kindl H
    Eur J Biochem; 1994 Jan; 219(1-2):57-63. PubMed ID: 8307022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of microbodies (glyoxysomes and leaf peroxisomes) in cotyledons of germinating watermelon seedlings.
    Kagawa T; Beevers H
    Plant Physiol; 1975 Feb; 55(2):258-64. PubMed ID: 16659062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A receptor-like kinase from Arabidopsis thaliana is a calmodulin-binding protein.
    Charpenteau M; Jaworski K; Ramirez BC; Tretyn A; Ranjeva R; Ranty B
    Biochem J; 2004 May; 379(Pt 3):841-8. PubMed ID: 14720124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.