BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 1458201)

  • 1. High frequency pressure propagation in viscoelastic tubes: a new experimental approach.
    Ursino M; Artioli E
    Biomed Mater Eng; 1992; 2(1):19-31. PubMed ID: 1458201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave propagation in the silicon tube: comparison of the two-point and three-point pressure methods.
    Ursino M; Artioli E
    Biomed Mater Eng; 1992; 2(3):155-69. PubMed ID: 1458210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes.
    Ursino M; Artioli E; Gallerani M
    J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave propagation with different pressure signals: an experimental study on the latex tube.
    Ursino M; Artioli E; Gallerani M
    Med Biol Eng Comput; 1993 Jul; 31(4):363-71. PubMed ID: 8231298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the effects of measurement errors on the evaluation of propagation coefficients, in rubber tubes and canine aorta in vivo.
    Bertram CD; She J
    Technol Health Care; 1995 Dec; 3(3):161-84. PubMed ID: 8749864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.
    Feng J; Long Q; Khir AW
    J Biomech; 2007; 40(10):2130-8. PubMed ID: 17166499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave motions in a collapsible tube conveying fluid.
    Matsuzaki Y; Matsumoto T
    Monogr Atheroscler; 1990; 15():138-49. PubMed ID: 2296240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid concept on the mechanical test method of small caliber blood vessel.
    Yokobori AT; Ohkuma T; Yoshinari H; Ichiki M; Ohuchi H; Yokobori T
    Biomed Mater Eng; 1993; 3(4):175-83. PubMed ID: 8205059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided wave propagation and mode differentiation in hollow cylinders with viscoelastic coatings.
    Mu J; Rose JL
    J Acoust Soc Am; 2008 Aug; 124(2):866-74. PubMed ID: 18681579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation velocity and attenuation of a shear wave pulse measured by ultrasound detection in agarose and polyacrylamide gels.
    Klinkosz T; Lewa CJ; Paczkowski J
    Ultrasound Med Biol; 2008 Feb; 34(2):265-75. PubMed ID: 17935864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new Doppler method for assessing left ventricular diastolic stiffness based on principles of flow wave propagation: mathematical basis and review of the method.
    Pai RG; Shah PM
    J Heart Valve Dis; 1993 Mar; 2(2):167-73. PubMed ID: 8261154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of length on the fundamental resonance frequency of arterial models having radial dilatation.
    Wang YY; Lia WC; Hsiu H; Jan MY; Wang WK
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):313-8. PubMed ID: 10743772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear propagation of pulsatile waves in viscoelastic tubes.
    Horsten JB; Van Steenhoven AA; Van Dongen ME
    J Biomech; 1989; 22(5):477-84. PubMed ID: 2777822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation.
    Ottesen JT
    J Math Biol; 2003 Apr; 46(4):309-32. PubMed ID: 12673509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of viscoelastic properties of tissue-mimicking material using longitudinal wave excitation.
    Baghani A; Eskandari H; Salcudean S; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1405-18. PubMed ID: 19574151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The area of the pressure-flow loop for assessment of arterial stenosis: a new index.
    Ovadia-Blechman Z; Einav S; Zaretsky U; Castel D; Toledo E; Eldar M
    Technol Health Care; 2002; 10(1):39-56. PubMed ID: 11847447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of shear waves generated by a modulated finite amplitude radiation force in a viscoelastic medium.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):575-88. PubMed ID: 19411216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.