BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 14582610)

  • 1. Characteristics of blood flow resistance under transverse vibration: red blood cell suspension in Dextran-40.
    Shin S; Ku Y; Suh JS; Moon SY; Jang JY
    Ann Biomed Eng; 2003 Oct; 31(9):1077-83. PubMed ID: 14582610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood flow resistance with vibration and its effect on blood cell migration.
    Shin S; Ku Y; Park MS; Moon SY; Suh JS
    Clin Hemorheol Microcirc; 2004; 30(3-4):353-8. PubMed ID: 15258366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-layered model of Casson fluid flow through stenotic blood vessels: applications to the cardiovascular system.
    Srivastava VP; Saxena M
    J Biomech; 1994 Jul; 27(7):921-8. PubMed ID: 8063842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.
    Pal R
    J Biomech; 2003 Jul; 36(7):981-9. PubMed ID: 12757807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent threshold shear stress of red blood cell aggregation.
    Lim HJ; Lee YJ; Nam JH; Chung S; Shin S
    J Biomech; 2010 Feb; 43(3):546-50. PubMed ID: 19878949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red blood cell aggregation and blood viscosity in an isolated heart preparation.
    Charansonney O; Mouren S; Dufaux J; Duvelleroy M; Vicaut E
    Biorheology; 1993; 30(1):75-84. PubMed ID: 7690613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis.
    Sun C; Munn LL
    Biophys J; 2005 Mar; 88(3):1635-45. PubMed ID: 15613630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary penetration failure of blood suspensions.
    Zhou R; Chang HC
    J Colloid Interface Sci; 2005 Jul; 287(2):647-56. PubMed ID: 15925633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of the dextran-induced red blood cell aggregation.
    Pribush A; Zilberman-Kravits D; Meyerstein N
    Eur Biophys J; 2007 Feb; 36(2):85-94. PubMed ID: 17091267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of red blood cell hyperaggregation on the rat microcirculation blood flow.
    Durussel JJ; Berthault MF; Guiffant G; Dufaux J
    Acta Physiol Scand; 1998 May; 163(1):25-32. PubMed ID: 9648620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of blood viscosity using a pressure-scanning capillary viscometer.
    Shin S; Ku Y; Park MS; Suh JS
    Clin Hemorheol Microcirc; 2004; 30(3-4):467-70. PubMed ID: 15258389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation.
    Yalcin O; Ulker P; Yavuzer U; Meiselman HJ; Baskurt OK
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2098-105. PubMed ID: 18326799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peculiar flow patterns of RBCs suspended in viscous fluids and perfused through a narrow tube (25 microm).
    Sakai H; Sato A; Okuda N; Takeoka S; Maeda N; Tsuchida E
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H583-9. PubMed ID: 19502557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.