These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 14582616)

  • 1. Initial burst measures of release kinetics from fiber matrices.
    Sagiv A; Parker N; Parkhi V; Nelson KD
    Ann Biomed Eng; 2003 Oct; 31(9):1132-40. PubMed ID: 14582616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fiber distribution model for predicting drug release rates.
    Petlin DG; Amarah AA; Tverdokhlebov SI; Anissimov YG
    J Control Release; 2017 Jul; 258():218-225. PubMed ID: 28526437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process.
    Lemaire V; Bélair J; Hildgen P
    Int J Pharm; 2003 Jun; 258(1-2):95-107. PubMed ID: 12753757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycaprolactone thin-film drug delivery systems: Empirical and predictive models for device design.
    Schlesinger E; Ciaccio N; Desai TA
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():232-9. PubMed ID: 26354259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation conditions effect on the morphology and release kinetics of biodegradable particles: a mathematical approach.
    Deloge A; Kalaji N; Sheibat-Othman N; Lin VS; Farge P; Fessi H
    J Nanosci Nanotechnol; 2009 Jan; 9(1):467-74. PubMed ID: 19441336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro release testing of matrices based on starch-methyl methacrylate copolymers: effect of tablet crushing force, dissolution medium pH and stirring rate.
    Ferrero C; Jiménez-Castellanos MR
    Int J Pharm; 2014 Jan; 461(1-2):270-9. PubMed ID: 24333902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation of drug release from planar matrix systems: effects of a finite dissolution rate.
    Frenning G
    J Control Release; 2003 Oct; 92(3):331-9. PubMed ID: 14568413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Size Distribution for Diffusion-Controlled Drug Release From Drug Delivery Systems of Various Geometries.
    Spiridonova TI; Tverdokhlebov SI; Anissimov YG
    J Pharm Sci; 2019 Aug; 108(8):2690-2697. PubMed ID: 30980858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microporous structure and drug release kinetics of polymeric nanoparticles.
    Sant S; Thommes M; Hildgen P
    Langmuir; 2008 Jan; 24(1):280-7. PubMed ID: 18052222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A poly(ε-caprolactone) device for sustained release of an anti-glaucoma drug.
    Natu MV; Gaspar MN; Ribeiro CA; Correia IJ; Silva D; de Sousa HC; Gil MH
    Biomed Mater; 2011 Apr; 6(2):025003. PubMed ID: 21293056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of drug release from biodegradable polymer blends.
    Lao LL; Venkatraman SS; Peppas NA
    Eur J Pharm Biopharm; 2008 Nov; 70(3):796-803. PubMed ID: 18577449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels.
    Serra L; Doménech J; Peppas NA
    Biomaterials; 2006 Nov; 27(31):5440-51. PubMed ID: 16828864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of New Risperidone Depot Microspheres Based on Novel Biocompatible Poly(Alkylene Adipate) Polyesters as Long-Acting Injectable Formulations.
    Nanaki S; Barmpalexis P; Papakonstantinou Z; Christodoulou E; Kostoglou M; Bikiaris DN
    J Pharm Sci; 2018 Nov; 107(11):2891-2901. PubMed ID: 30096352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier.
    Narasimhan B; Peppas NA
    J Pharm Sci; 1997 Mar; 86(3):297-304. PubMed ID: 9050796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of drug release from polymeric delivery systems--a review.
    Kanjickal DG; Lopina ST
    Crit Rev Ther Drug Carrier Syst; 2004; 21(5):345-86. PubMed ID: 15717734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of the macroporosity of polycaprolactone-based biocomposites and release kinetics for drug delivery.
    Wang Y; Chang HI; Wertheim DF; Jones AS; Jackson C; Coombes AG
    Biomaterials; 2007 Nov; 28(31):4619-27. PubMed ID: 17659772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel bioresorbabale composite fiber structures loaded with proteins for tissue regeneration applications: microstructure and protein release.
    Levy Y; Zilberman M
    J Biomed Mater Res A; 2006 Dec; 79(4):779-87. PubMed ID: 16883584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between drug release and some physical parameters of drug sorption onto PLA fibers.
    Xu W; Yang Y
    J Biomater Sci Polym Ed; 2010; 21(4):445-62. PubMed ID: 20233502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-CT in drug delivery.
    Wang Y; Wertheim DF; Jones AS; Coombes AG
    Eur J Pharm Biopharm; 2010 Jan; 74(1):41-9. PubMed ID: 19465120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.