BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 14582855)

  • 1. Olfactory bulbectomy modifies photic entrainment and circadian rhythms of body temperature and locomotor activity in a nocturnal primate.
    Perret M; Aujard F; Séguy M; Schilling A
    J Biol Rhythms; 2003 Oct; 18(5):392-401. PubMed ID: 14582855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olfactory bulbectomy impedes social but not photic reentrainment of circadian rhythms in female Octodon degus.
    Goel N; Lee TM
    J Biol Rhythms; 1997 Aug; 12(4):362-70. PubMed ID: 9438884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of the olfactory bulbs delays photic reentrainment of circadian activity rhythms and modifies the reproductive axis in male Octodon degus.
    Goel N; Lee TM; Pieper DR
    Brain Res; 1998 May; 792(2):229-36. PubMed ID: 9593909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory cues accelerate reentrainment following phase shifts and entrain free-running rhythms in female Octodon degus (Rodentia).
    Governale MM; Lee TM
    J Biol Rhythms; 2001 Oct; 16(5):489-501. PubMed ID: 11669422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily hypothermia and torpor in a tropical primate: synchronization by 24-h light-dark cycle.
    Perret M; Aujard F
    Am J Physiol Regul Integr Comp Physiol; 2001 Dec; 281(6):R1925-33. PubMed ID: 11705779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature rhythm reentrains faster than locomotor rhythm after a light phase shift.
    Satoh Y; Kawai H; Kudo N; Kawashima Y; Mitsumoto A
    Physiol Behav; 2006 Jul; 88(4-5):404-10. PubMed ID: 16730361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits.
    Navarrete E; Ortega-Bernal JR; Trejo-Muñoz L; Díaz G; Montúfar-Chaveznava R; Caldelas I
    PLoS One; 2016; 11(6):e0156539. PubMed ID: 27305041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olfactory bulbectomy induces rapid and stable changes in basal and stress-induced locomotor activity, heart rate and body temperature responses in the home cage.
    Vinkers CH; Breuer ME; Westphal KG; Korte SM; Oosting RS; Olivier B; Groenink L
    Neuroscience; 2009 Mar; 159(1):39-46. PubMed ID: 19136045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi.
    Goldman BD; Goldman SL; Riccio AP; Terkel J
    J Biol Rhythms; 1997 Aug; 12(4):348-61. PubMed ID: 9438883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; Pévet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate.
    Cayetanot F; Van Someren EJ; Perret M; Aujard F
    J Biol Rhythms; 2005 Oct; 20(5):461-9. PubMed ID: 16267385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of intergeniculate leaflet lesions on circadian rhythms in Octodon degus.
    Goel N; Governale MM; Jechura TJ; Lee TM
    Brain Res; 2000 Sep; 877(2):306-13. PubMed ID: 10986345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily hypothermia in captive grey mouse lemurs (Microcebus murinus): effects of photoperiod and food restriction.
    Génin F; Perret M
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Sep; 136(1):71-81. PubMed ID: 12941640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory bulb control of circadian activity rhythm in mice.
    Possidente B; Lumia AR; McGinnis MY; Teicher MH; deLemos E; Sterner L; Deros L
    Brain Res; 1990 Apr; 513(2):325-8. PubMed ID: 2350703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a short photoperiod on circadian rhythms of body temperature and motor activity in old rats.
    Benstaali C; Bogdan A; Touitou Y
    Pflugers Arch; 2002 May; 444(1-2):73-9. PubMed ID: 11976918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase shift magnitude and direction determine whether Siberian hamsters reentrain to the photocycle.
    Ruby NF; Joshi N; Heller HC
    J Biol Rhythms; 1998 Dec; 13(6):506-17. PubMed ID: 9850011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased late night response to light controls the circadian pacemaker in a nocturnal primate.
    Perret M; Gomez D; Barbosa A; Aujard F; Théry M
    J Biol Rhythms; 2010 Jun; 25(3):186-96. PubMed ID: 20484690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restraint stress delays reentrainment in male and female diurnal and nocturnal rodents.
    Mohawk JA; Lee TM
    J Biol Rhythms; 2005 Jun; 20(3):245-56. PubMed ID: 15851531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.