These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 14582963)
1. Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. Miller SS; Reid LM; Butler G; Winter SP; McGoldrick NJ J Agric Food Chem; 2003 Nov; 51(23):6702-8. PubMed ID: 14582963 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of non-enzymatic glycation by silk extracts from a Mexican land race and modern inbred lines of maize (Zea mays). Farsi DA; Harris CS; Reid L; Bennett SA; Haddad PS; Martineau LC; Arnason JT Phytother Res; 2008 Jan; 22(1):108-12. PubMed ID: 17724765 [TBL] [Abstract][Full Text] [Related]
3. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419 [TBL] [Abstract][Full Text] [Related]
4. Maize (Zea mays L.) genetic factors for preventing fumonisin contamination. Butrón A; Santiago R; Mansilla P; Pintos-Varela C; Ordas A; Malvar RA J Agric Food Chem; 2006 Aug; 54(16):6113-7. PubMed ID: 16881725 [TBL] [Abstract][Full Text] [Related]
5. Pre-harvest accumulation of deoxynivalenol in sweet corn ears inoculated with Fusarium graminearum. Reid LM; Zhu X; Savard ME; Sinha RC; Vigier B Food Addit Contam; 2000 Aug; 17(8):689-701. PubMed ID: 11027030 [TBL] [Abstract][Full Text] [Related]
6. [Marking of the loci encoding maize resistance to Fusarium]. Kozhukhova NE; Syvolap IuM; Varenyk BF; Sokolov VM Tsitol Genet; 2007; 41(2):37-41. PubMed ID: 17494342 [TBL] [Abstract][Full Text] [Related]
7. Role of hydroxycinnamic acids in the infection of maize silks by Fusarium graminearum Schwabe. Cao A; Reid LM; Butrón A; Malvar RA; Souto XC; Santiago R Mol Plant Microbe Interact; 2011 Sep; 24(9):1020-6. PubMed ID: 21635140 [TBL] [Abstract][Full Text] [Related]
8. Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Mohammadi M; Anoop V; Gleddie S; Harris LJ Proteomics; 2011 Sep; 11(18):3675-84. PubMed ID: 21751381 [TBL] [Abstract][Full Text] [Related]
9. Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels. Bakan B; Bily AC; Melcion D; Cahagnier B; Regnault-Roger C; Philogène BJ; Richard-Molard D J Agric Food Chem; 2003 Apr; 51(9):2826-31. PubMed ID: 12696980 [TBL] [Abstract][Full Text] [Related]
10. Biology of maize kernel infection by Fusarium verticillioides. Duncan KE; Howard RJ Mol Plant Microbe Interact; 2010 Jan; 23(1):6-16. PubMed ID: 19958134 [TBL] [Abstract][Full Text] [Related]
11. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize. Johnson ET; Berhow MA; Dowd PF J Agric Food Chem; 2007 Apr; 55(8):2998-3003. PubMed ID: 17385885 [TBL] [Abstract][Full Text] [Related]
12. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. Naef A; Zesiger T; Défago G J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384 [TBL] [Abstract][Full Text] [Related]
13. The influence of fusarium ear infection on the maize yield and quality (Transylvania-Romania). Nagy E; Voichiţa H; Kadar R Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1147-50. PubMed ID: 17390871 [TBL] [Abstract][Full Text] [Related]
14. Tissue-specific components of resistance to Aspergillus ear rot of maize. Mideros SX; Windham GL; Williams WP; Nelson RJ Phytopathology; 2012 Aug; 102(8):787-93. PubMed ID: 22779745 [TBL] [Abstract][Full Text] [Related]
15. Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi which enhances fungal and insect resistance. Dowd PF; Johnson ET J Plant Res; 2016 Jan; 129(1):13-20. PubMed ID: 26659597 [TBL] [Abstract][Full Text] [Related]
16. Comparison of two selective culture media for the detection of Fusarium infection in conventional and transgenic maize kernels. Alborch L; Bragulat MR; Cabañes FJ Lett Appl Microbiol; 2010 Mar; 50(3):270-5. PubMed ID: 20070505 [TBL] [Abstract][Full Text] [Related]
17. Maize ear rot and moniliformin contamination by cryptic species of Fusarium subglutinans. Desjardins AE; Maragos CM; Proctor RH J Agric Food Chem; 2006 Sep; 54(19):7383-90. PubMed ID: 16968109 [TBL] [Abstract][Full Text] [Related]
18. Protocols to enable fluorescence microscopy of microbial interactions on living maize silks (style tissue). Thompson MEH; Raizada MN J Microbiol Methods; 2024 Oct; 225():107027. PubMed ID: 39214401 [TBL] [Abstract][Full Text] [Related]
19. Identification and effects of maize silk volatiles on cultures of Aspergillus flavus. Zeringue HJ J Agric Food Chem; 2000 Mar; 48(3):921-5. PubMed ID: 10725175 [TBL] [Abstract][Full Text] [Related]
20. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]