These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 14583124)
1. Spatial navigation in virtual reality environments: an EEG analysis. Bischof WF; Boulanger P Cyberpsychol Behav; 2003 Oct; 6(5):487-95. PubMed ID: 14583124 [TBL] [Abstract][Full Text] [Related]
2. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. Kober SE; Neuper C Int J Psychophysiol; 2011 Mar; 79(3):347-55. PubMed ID: 21146566 [TBL] [Abstract][Full Text] [Related]
3. Human theta oscillations exhibit task dependence during virtual maze navigation. Kahana MJ; Sekuler R; Caplan JB; Kirschen M; Madsen JR Nature; 1999 Jun; 399(6738):781-4. PubMed ID: 10391243 [TBL] [Abstract][Full Text] [Related]
4. Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Goodrich-Hunsaker NJ; Livingstone SA; Skelton RW; Hopkins RO Hippocampus; 2010 Apr; 20(4):481-91. PubMed ID: 19554566 [TBL] [Abstract][Full Text] [Related]
5. Theta oscillations and human navigation: a magnetoencephalography study. de Araújo DB; Baffa O; Wakai RT J Cogn Neurosci; 2002 Jan; 14(1):70-8. PubMed ID: 11798388 [TBL] [Abstract][Full Text] [Related]
6. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation. Pu Y; Cornwell BR; Cheyne D; Johnson BW Hum Brain Mapp; 2017 Mar; 38(3):1347-1361. PubMed ID: 27813230 [TBL] [Abstract][Full Text] [Related]
7. Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. Cornwell BR; Johnson LL; Holroyd T; Carver FW; Grillon C J Neurosci; 2008 Jun; 28(23):5983-90. PubMed ID: 18524903 [TBL] [Abstract][Full Text] [Related]
8. Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. Brown TI; Ross RS; Keller JB; Hasselmo ME; Stern CE J Neurosci; 2010 May; 30(21):7414-22. PubMed ID: 20505108 [TBL] [Abstract][Full Text] [Related]
9. Evidence for the influence of testosterone in the performance of spatial navigation in a virtual water maze in women but not in men. Burkitt J; Widman D; Saucier DM Horm Behav; 2007 May; 51(5):649-54. PubMed ID: 17462646 [TBL] [Abstract][Full Text] [Related]
11. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI. Rodriguez PF Behav Neurosci; 2010 Aug; 124(4):532-40. PubMed ID: 20695652 [TBL] [Abstract][Full Text] [Related]
12. Virtual navigation for memory rehabilitation in a traumatic brain injured patient. Caglio M; Latini-Corazzini L; D'Agata F; Cauda F; Sacco K; Monteverdi S; Zettin M; Duca S; Geminiani G Neurocase; 2012; 18(2):123-31. PubMed ID: 22352998 [TBL] [Abstract][Full Text] [Related]
13. The topographical N170: electrophysiological evidence of a neural mechanism for human spatial navigation. Baker TE; Holroyd CB Biol Psychol; 2013 Sep; 94(1):90-105. PubMed ID: 23669533 [TBL] [Abstract][Full Text] [Related]
14. Mongolian gerbils learn to navigate in complex virtual spaces. Thurley K; Henke J; Hermann J; Ludwig B; Tatarau C; Wätzig A; Herz AV; Grothe B; Leibold C Behav Brain Res; 2014 Jun; 266():161-8. PubMed ID: 24631394 [TBL] [Abstract][Full Text] [Related]
15. Exploration of virtual mazes by rhesus monkeys (Macaca mulatta). Washburn DA; Astur RS Anim Cogn; 2003 Sep; 6(3):161-8. PubMed ID: 12750961 [TBL] [Abstract][Full Text] [Related]
16. Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. Caplan JB; Madsen JR; Raghavachari S; Kahana MJ J Neurophysiol; 2001 Jul; 86(1):368-80. PubMed ID: 11431517 [TBL] [Abstract][Full Text] [Related]
17. Anxiety-dependent spatial navigation strategies in virtual and real spaces. Kállai J; Karádi K; Feldmann A Cogn Process; 2009 Sep; 10 Suppl 2():S229-32. PubMed ID: 19693574 [No Abstract] [Full Text] [Related]
18. Age effects on wayfinding and route learning skills. Head D; Isom M Behav Brain Res; 2010 May; 209(1):49-58. PubMed ID: 20085784 [TBL] [Abstract][Full Text] [Related]
19. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task. Wilkins LK; Girard TA; Konishi K; King M; Herdman KA; King J; Christensen B; Bohbot VD Hippocampus; 2013 Nov; 23(11):1015-24. PubMed ID: 23939937 [TBL] [Abstract][Full Text] [Related]
20. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. Slobounov SM; Ray W; Johnson B; Slobounov E; Newell KM Int J Psychophysiol; 2015 Mar; 95(3):254-60. PubMed ID: 25448267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]