These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14583224)

  • 1. Numerical analysis of capillarity in packed spheres: planar hexagonal-packed spheres.
    Hilden JL; Trumble KP
    J Colloid Interface Sci; 2003 Nov; 267(2):463-74. PubMed ID: 14583224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Packed uniform sphere model for solids: interstitial access opening sizes and pressure deficiencies for wetting liquids with comparison to reported experimental results.
    Mayer RP; Stowe RA
    J Colloid Interface Sci; 2006 Feb; 294(1):139-50. PubMed ID: 16085078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nodoids and toroids: comparison of two geometries for the meniscus profile of a wetting liquid between two touching isolated spheres and extensions to the model of a collection of packed spheres.
    Mayer RP; Stowe RA
    J Colloid Interface Sci; 2005 May; 285(2):781-8. PubMed ID: 15837497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floating and Sinking of a Pair of Spheres at a Liquid-Fluid Interface.
    Cooray H; Cicuta P; Vella D
    Langmuir; 2017 Feb; 33(6):1427-1436. PubMed ID: 28093906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface.
    Kim PY; Dinsmore AD; Hoagland DA; Russell TP
    Soft Matter; 2018 Mar; 14(11):2131-2141. PubMed ID: 29488991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous micropillar structures for retaining low surface tension liquids.
    Agonafer DD; Lee H; Vasquez PA; Won Y; Jung KW; Lingamneni S; Ma B; Shan L; Shuai S; Du Z; Maitra T; Palko JW; Goodson KE
    J Colloid Interface Sci; 2018 Mar; 514():316-327. PubMed ID: 29275250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between cubic and hexagonal phases in block copolymer solutions.
    Park MJ; Char K; Bang J; Lodge TP
    Langmuir; 2005 Feb; 21(4):1403-11. PubMed ID: 15697287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended Gibbs Free Energy and Laplace Pressure of Ordered Hexagonal Close-Packed Spherical Particles: A Wettability Study.
    Bayat A; Ebrahimi M; Ardekani SR; Iranizad ES; Moshfegh AZ
    Langmuir; 2021 Jul; 37(28):8382-8392. PubMed ID: 34240875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrusion of a Liquid Droplet into a Powder under Gravity.
    Boyce CM; Ozel A; Sundaresan S
    Langmuir; 2016 Aug; 32(34):8631-40. PubMed ID: 27487358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Surface Wettability on Adsorption Isotherms of Water Vapor.
    Churaev NV; Setzer MJ; Adolphs J
    J Colloid Interface Sci; 1998 Jan; 197(2):327-33. PubMed ID: 9466874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting behavior of spherical nanoparticles at a vapor-liquid interface: a density functional theory study.
    Zeng M; Mi J; Zhong C
    Phys Chem Chem Phys; 2011 Mar; 13(9):3932-41. PubMed ID: 21212890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting behavior of a drop atop holes.
    Chou TH; Hong SJ; Sheng YJ; Tsao HK
    J Phys Chem B; 2010 Jun; 114(22):7509-15. PubMed ID: 20476745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of particle hydrophobicity, separation distance and packing patterns on the stability of a thin film.
    Morris G; Pursell MR; Neethling SJ; Cilliers JJ
    J Colloid Interface Sci; 2008 Nov; 327(1):138-44. PubMed ID: 18760419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The uniform capillary model for packed beds and particle wettability.
    Stevens N; Ralston J; Sedev R
    J Colloid Interface Sci; 2009 Sep; 337(1):162-9. PubMed ID: 19486994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage.
    Chen C; Gao C; Zhuang L; Li X; Wu P; Dong J; Lu J
    Langmuir; 2010 Jun; 26(12):9533-8. PubMed ID: 20225880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A note on evolution of pressure and flow within an evaporating capillary bridge.
    Yang S; Mielniczuk B; Saïd El Youssoufi M; Hueckel T
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):140. PubMed ID: 30552501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic interaction between spheres coated with deformable thin liquid films.
    Yang SM; Leal LG; Kim YS
    J Colloid Interface Sci; 2002 Jun; 250(2):457-65. PubMed ID: 16290685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting of regularly structured gold surfaces.
    Abdelsalam ME; Bartlett PN; Kelf T; Baumberg J
    Langmuir; 2005 Mar; 21(5):1753-7. PubMed ID: 15723469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.