These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 14583273)

  • 1. Study on the binding mode of zinc(II) protoporphyrin and ctDNA in water.
    Tong AJ; Tong CY; Yang QY
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Nov; 59(13):2967-70. PubMed ID: 14583273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-substrate room-temperature phosphorescence study on zinc(II) and tin(IV) protoporphyrins and their interaction with DNA.
    Tong AJ; Liu L; Liu L; Li LD; Huie CW
    Fresenius J Anal Chem; 2001 Aug; 370(8):1023-8. PubMed ID: 11583081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the phosphorescence characterizations of palmatine chloride on the solid substrate and its interaction with ctDNA.
    Li J; Shuang S; Dong C
    Talanta; 2009 Jan; 77(3):1043-9. PubMed ID: 19064089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Via zinc(II) protoporphyrin to the synthesis of poly(ZnPP-MAA-EGDMA) for the imprinting and selective binding of bilirubin.
    Chou SK; Syu MJ
    Biomaterials; 2009 Mar; 30(7):1255-62. PubMed ID: 19100614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural, Photophysical, and Photochemical Characterization of Zinc Protoporphyrin IX in a Dimeric Variant of an Iron Storage Protein: Insights into the Mechanism of Photosensitized H
    Benavides BS; Acharya R; Clark ER; Basak P; Maroney MJ; Nocek JM; Schanze KS; Kurtz DM
    J Phys Chem B; 2019 Aug; 123(31):6740-6749. PubMed ID: 31294990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water extractability of the zinc protoporphyrin IX-myoglobin complex from Parma ham is pH-dependent.
    Abe H; Zhai Y; Toba Y; Masumo H; Hayakawa T; Kumura H; Wakamatsu JI
    Food Chem; 2024 May; 441():138317. PubMed ID: 38199102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of paraquat with calf thymus DNA: a terbium(III) luminescent probe and multispectral study.
    Tong C; Xiang G; Bai Y
    J Agric Food Chem; 2010 May; 58(9):5257-62. PubMed ID: 20402507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosensitized reduction of water to hydrogen using human serum albumin complexed with zinc-protoporphyrin IX.
    Komatsu T; Wang RM; Zunszain PA; Curry S; Tsuchida E
    J Am Chem Soc; 2006 Dec; 128(50):16297-301. PubMed ID: 17165784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of contributors to zinc protoporphyrin IX formation at optimum pH 5.5 in pork.
    Akter M; Shiraishi A; Kumura H; Hayakawa T; Wakamatsu JI
    Anim Sci J; 2019 Jun; 90(6):774-780. PubMed ID: 30997727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate spectrochemical analysis of interactions of three common Isatin derivatives to calf thymus DNA in vitro.
    Shahbazy M; Pakravan P; Kompany-Zareh M
    J Biomol Struct Dyn; 2017 Sep; 35(12):2539-2556. PubMed ID: 27593978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc protoporphyrin IX predominantly exists as a complex non-enzymatically bound to apo-hemoglobin in Parma ham.
    Zhai Y; Wang HC; Hayakawa T; Kumura H; Wakamatsu JI
    Food Chem; 2022 Nov; 395():133604. PubMed ID: 35802968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic Evidence of Phosphorous Heterocycle-DNA Interaction and its Verification by Docking Approach.
    Roy S; Saxena SK; Mishra S; Yogi P; Sagdeo PR; Kumar R
    J Fluoresc; 2018 Jan; 28(1):373-380. PubMed ID: 29243048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the interaction of triadimenol with calf thymus DNA by multispectroscopic methods and molecular modeling.
    Zhang Y; Zhang G; Fu P; Ma Y; Zhou J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():1012-9. PubMed ID: 22944149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast relaxation of zinc protoporphyrin encapsulated within apomyoglobin in buffer solutions.
    Luo L; Chang CH; Chen YC; Wu TK; Diau EW
    J Phys Chem B; 2007 Jul; 111(26):7656-64. PubMed ID: 17567061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groove Binding of Vanillin and Ethyl Vanillin to Calf Thymus DNA.
    Xia K; Zhang G; Li S; Gong D
    J Fluoresc; 2017 Sep; 27(5):1815-1828. PubMed ID: 28547116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the intercalative binding modes of benzoyl peroxide with calf thymus DNA.
    Xia K; Zhang G; Gong D
    Luminescence; 2017 Sep; 32(6):988-998. PubMed ID: 28116811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA.
    Tao M; Zhang G; Pan J; Xiong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 155():28-37. PubMed ID: 26571092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH.
    Zhang S; Sun X; Jing Z; Qu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):213-6. PubMed ID: 21856217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic porphyrins bearing diazolium rings: synthesis and their interaction with calf thymus DNA.
    Tjahjono DH; Akutsu T; Yoshioka N; Inoue H
    Biochim Biophys Acta; 1999 Oct; 1472(1-2):333-43. PubMed ID: 10572955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on spectroscopic characterization of Cu porphyrin/Co porphyrin and their interactions with ctDNA.
    Li J; Wei Y; Guo L; Zhang C; Jiao Y; Shuang S; Dong C
    Talanta; 2008 Jun; 76(1):34-9. PubMed ID: 18585236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.