BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 14583463)

  • 1. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications.
    Mitsiades CS; Mitsiades NS; Bronson RT; Chauhan D; Munshi N; Treon SP; Maxwell CA; Pilarski L; Hideshima T; Hoffman RM; Anderson KC
    Cancer Res; 2003 Oct; 63(20):6689-96. PubMed ID: 14583463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disseminated growth of a human multiple myeloma cell line in mice with severe combined immunodeficiency disease.
    Huang YW; Richardson JA; Tong AW; Zhang BQ; Stone MJ; Vitetta ES
    Cancer Res; 1993 Mar; 53(6):1392-6. PubMed ID: 8443818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LAGlambda-1: a clinically relevant drug resistant human multiple myeloma tumor murine model that enables rapid evaluation of treatments for multiple myeloma.
    Campbell RA; Manyak SJ; Yang HH; Sjak-Shie NN; Chen H; Gui D; Popoviciu L; Wang C; Gordon M; Pang S; Bonavida B; Said J; Berenson JR
    Int J Oncol; 2006 Jun; 28(6):1409-17. PubMed ID: 16685443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioluminescence imaging based in vivo model for preclinical testing of novel cellular immunotherapy strategies to improve the graft-versus-myeloma effect.
    Rozemuller H; van der Spek E; Bogers-Boer LH; Zwart MC; Verweij V; Emmelot M; Groen RW; Spaapen R; Bloem AC; Lokhorst HM; Mutis T; Martens AC
    Haematologica; 2008 Jul; 93(7):1049-57. PubMed ID: 18492693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin-18 inhibits lodging and subsequent growth of human multiple myeloma cells in the bone marrow.
    Yamashita K; Iwasaki T; Tsujimura T; Sugihara A; Yamada N; Ueda H; Okamura H; Futani H; Maruo S; Terada N
    Oncol Rep; 2002; 9(6):1237-44. PubMed ID: 12375027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of intrathoracically disseminated solid tumors in mice with optical imaging by telomerase-specific amplification of a transferred green fluorescent protein gene.
    Umeoka T; Kawashima T; Kagawa S; Teraishi F; Taki M; Nishizaki M; Kyo S; Nagai K; Urata Y; Tanaka N; Fujiwara T
    Cancer Res; 2004 Sep; 64(17):6259-65. PubMed ID: 15342413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model.
    Bouvet M; Wang J; Nardin SR; Nassirpour R; Yang M; Baranov E; Jiang P; Moossa AR; Hoffman RM
    Cancer Res; 2002 Mar; 62(5):1534-40. PubMed ID: 11888932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo optical imaging of acute myeloid leukemia by green fluorescent protein: time-domain autofluorescence decoupling, fluorophore quantification, and localization.
    McCormack E; Micklem DR; Pindard LE; Silden E; Gallant P; Belenkov A; Lorens JB; Gjertsen BT
    Mol Imaging; 2007; 6(3):193-204. PubMed ID: 17532885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Monoclonal antibody against brain derived neurotrophic factor inhibits myeloma growth and angiogenesis in the xenograft NOD/SCID animal model].
    Wang YD; Hu Y; Zhang L; Huang J; Sun CY
    Zhonghua Xue Ye Xue Za Zhi; 2007 Oct; 28(10):659-63. PubMed ID: 18399169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors.
    Yang M; Reynoso J; Jiang P; Li L; Moossa AR; Hoffman RM
    Cancer Res; 2004 Dec; 64(23):8651-6. PubMed ID: 15574773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice.
    Samira S; Ferrand C; Peled A; Nagler A; Tovbin Y; Ben-Hur H; Taylor N; Globerson A; Lapidot T
    Stem Cells; 2004; 22(6):1085-100. PubMed ID: 15536198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu In vivo model of human multiple myeloma.
    Tassone P; Neri P; Burger R; Savino R; Shammas M; Catley L; Podar K; Chauhan D; Masciari S; Gozzini A; Tagliaferri P; Venuta S; Munshi NC; Anderson KC
    Clin Cancer Res; 2005 Jun; 11(11):4251-8. PubMed ID: 15930364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo model of human multiple myeloma bone disease.
    Alsina M; Boyce BF; Mundy GR; Roodman GD
    Stem Cells; 1995 Aug; 13 Suppl 2():48-50. PubMed ID: 8520511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterotransplantation of human multiple myeloma cell lines in severe combined immunodeficiency (SCID) mice.
    Tong AW; Huang YW; Zhang BQ; Netto G; Vitetta ES; Stone MJ
    Anticancer Res; 1993; 13(3):593-7. PubMed ID: 8391243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive visualization of retinoblastoma growth and metastasis via bioluminescence imaging.
    Ji X; Cheng L; Wei F; Li H; Wang M; Tian Y; Chen X; Wang Y; Wolf F; Li C; Huang Q
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5544-51. PubMed ID: 19608529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward development of a novel NOD/SCID-based in vivo strategy to model multiple myeloma pathogenesis.
    Bueno C; Lopes LF; Greaves M; Menendez P
    Exp Hematol; 2007 Oct; 35(10):1477-8. PubMed ID: 17681665
    [No Abstract]   [Full Text] [Related]  

  • 17. The SCID-hu myeloma model.
    Epstein J; Yaccoby S
    Methods Mol Med; 2005; 113():183-90. PubMed ID: 15968103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel nonobese diabetic/severe combined immunodeficient xenograft model for chronic lymphocytic leukemia reflects important clinical characteristics of the disease.
    Dürig J; Ebeling P; Grabellus F; Sorg UR; Möllmann M; Schütt P; Göthert J; Sellmann L; Seeber S; Flasshove M; Dührsen U; Moritz T
    Cancer Res; 2007 Sep; 67(18):8653-61. PubMed ID: 17875705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging.
    Yamamoto N; Yang M; Jiang P; Xu M; Tsuchiya H; Tomita K; Moossa AR; Hoffman RM
    Cancer Res; 2003 Nov; 63(22):7785-90. PubMed ID: 14633704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of bone marrow-derived stromal cells in gastrointestinal cancer development and metastasis.
    Ishii S; Tsuji S; Tsujii M; Kanazawa Y; Nishida T; Iijima H; Yasumaru M; Irie T; Yamamoto K; Tsutsui S; Eguchi H; Kawano S; Hayashi N
    J Gastroenterol Hepatol; 2008 Dec; 23 Suppl 2():S242-9. PubMed ID: 19120906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.