These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14585261)

  • 1. Classification of anticancer drugs--a new system based on therapeutic targets.
    Espinosa E; Zamora P; Feliu J; González Barón M
    Cancer Treat Rev; 2003 Dec; 29(6):515-23. PubMed ID: 14585261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new classification system of anticancer drugs - based on cell biological mechanisms.
    Wu XZ
    Med Hypotheses; 2006; 66(5):883-7. PubMed ID: 16414204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1,4-Anthraquinone: an anticancer drug that blocks nucleoside transport, inhibits macromolecule synthesis, induces DNA fragmentation, and decreases the growth and viability of L1210 leukemic cells in the same nanomolar range as daunorubicin in vitro.
    Perchellet EM; Magill MJ; Huang X; Dalke DM; Hua DH; Perchellet JP
    Anticancer Drugs; 2000 Jun; 11(5):339-52. PubMed ID: 10912950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing targeted therapies for lung cancer.
    Gandara DR
    Clin Adv Hematol Oncol; 2003 Nov; 1(11):648-9, 690. PubMed ID: 16258461
    [No Abstract]   [Full Text] [Related]  

  • 5. Emerging treatments in acute myeloid leukaemia.
    Kell J
    Expert Opin Emerg Drugs; 2004 May; 9(1):55-71. PubMed ID: 15155136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of new anticancer drugs by computer-aided drug design.
    Neidle S
    Ann Oncol; 1994; 5 Suppl 4():51-4. PubMed ID: 8060897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinone isomers of the WS-5995 antibiotics: synthetic antitumor agents that inhibit macromolecule synthesis, block nucleoside transport, induce DNA fragmentation, and decrease the growth and viability of L1210 leukemic cells more effectively than ellagic acid and genistein in vitro.
    Perchellet EM; Sperfslage BJ; Qabaja G; Jones GB; Perchellet JP
    Anticancer Drugs; 2001 Jun; 12(5):401-17. PubMed ID: 11395569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically engineered antibodies for direct antineoplastic treatment and systematic delivery of various therapeutic agents to cancer cells.
    Bodey B
    Expert Opin Biol Ther; 2001 Jul; 1(4):603-17. PubMed ID: 11727497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relevance of drug DNA sequence specificity to anti-tumour activity.
    Neidle S; Puvvada MS; Thurston DE
    Eur J Cancer; 1994; 30A(4):567-8. PubMed ID: 8018422
    [No Abstract]   [Full Text] [Related]  

  • 11. The use of synthetic oligonucleotides as protein inhibitors and anticode drugs in cancer therapy: accomplishments and limitations.
    Faria M; Ulrich H
    Curr Cancer Drug Targets; 2002 Dec; 2(4):355-68. PubMed ID: 12470211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxicity of ribo-and arabinoside boron nucleosides in tissue culture cells.
    Sood A; Spielvogel BF; Powell WJ; Bastow KF; Miller MC; Hall IH
    Anticancer Res; 1994; 14(4A):1483-8. PubMed ID: 7979174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antitumor activity of pyrindamycins A and B.
    Ishii S; Nagasawa M; Kariya Y; Yamamoto H; Inouye S; Kondo S
    J Antibiot (Tokyo); 1989 Nov; 42(11):1713-7. PubMed ID: 2531136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of isomeric 2-(arylmethylamino)-1,3-propanediols (AMAPs) and clinically established agents on macromolecular synthesis in P388 and MCF-7 cells.
    Carter CA; Bair KW
    Invest New Drugs; 1991 May; 9(2):125-36. PubMed ID: 1874597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs.
    Chaudhary PM; Roninson IB
    J Natl Cancer Inst; 1993 Apr; 85(8):632-9. PubMed ID: 8096875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New targets for non-small-cell lung cancer therapy.
    Alvarez M; Roman E; Santos ES; Raez LE
    Expert Rev Anticancer Ther; 2007 Oct; 7(10):1423-37. PubMed ID: 17944567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.
    Zajac M; Muszalska I; Jelinska A
    Curr Med Chem; 2016; 23(37):4176-4220. PubMed ID: 27528054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel molecular targets for prostate cancer therapy.
    Kamradt JM; Pienta KJ
    Semin Oncol; 1999 Apr; 26(2):234-43. PubMed ID: 10597734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically engineered monoclonal antibodies for direct anti-neoplastic treatment and cancer cell specific delivery of chemotherapeutic agents.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    Curr Pharm Des; 2000 Feb; 6(3):261-76. PubMed ID: 10637379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias.
    Shin JW; Mooney DJ
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12126-12131. PubMed ID: 27790998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.