BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14585694)

  • 1. Gravity spinning of polycaprolactone fibres for applications in tissue engineering.
    Williamson MR; Coombes AG
    Biomaterials; 2004 Feb; 25(3):459-65. PubMed ID: 14585694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells.
    Williamson MR; Woollard KJ; Griffiths HR; Coombes AG
    Tissue Eng; 2006 Jan; 12(1):45-51. PubMed ID: 16499441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravity spun polycaprolactone fibres: controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone).
    Williamson MR; Chang HI; Coombes AG
    Biomaterials; 2004 Sep; 25(20):5053-60. PubMed ID: 15109868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.
    Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F
    Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polycaprolactone fibres as a potential delivery system for collagen to support bone regeneration.
    McNeil SE; Griffiths HR; Perrie Y
    Curr Drug Deliv; 2011 Jul; 8(4):448-55. PubMed ID: 21235468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of chitosan-polycaprolactone blends for tissue engineering applications.
    Sarasam A; Madihally SV
    Biomaterials; 2005 Sep; 26(27):5500-8. PubMed ID: 15860206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned melt electrospun substrates for tissue engineering.
    Dalton PD; Joergensen NT; Groll J; Moeller M
    Biomed Mater; 2008 Sep; 3(3):034109. PubMed ID: 18689917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells.
    Burton TP; Corcoran A; Callanan A
    Biomed Mater; 2017 Nov; 13(1):015006. PubMed ID: 29165317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers.
    Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P
    J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release of an antibiotic, gentamicin sulphate, from gravity spun polycaprolactone fibers.
    Chang HI; Lau YC; Yan C; Coombes AG
    J Biomed Mater Res A; 2008 Jan; 84(1):230-7. PubMed ID: 17607742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of bioactive glass 9-93 fibres.
    Pirhonen E; Moimas L; Brink M
    Acta Biomater; 2006 Jan; 2(1):103-7. PubMed ID: 16701864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of CorGlaes(®) Pure 107 fibres for biomedical applications.
    Colquhoun R; Gadegaard N; Healy DM; Tanner KE
    J Mater Sci Mater Med; 2016 Oct; 27(10):149. PubMed ID: 27582069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering.
    Prasad T; Shabeena EA; Vinod D; Kumary TV; Anil Kumar PR
    J Mater Sci Mater Med; 2015 Jan; 26(1):5352. PubMed ID: 25578706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the effects of fibre alignment of smooth and textured fibres in electrospun membranes on fibroblast cell adhesion.
    Truong YB; Glattauer V; Lang G; Hands K; Kyratzis IL; Werkmeister JA; Ramshaw JA
    Biomed Mater; 2010 Apr; 5(2):25005. PubMed ID: 20308775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.