BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1075 related articles for article (PubMed ID: 14585973)

  • 21. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62.
    Lau A; Wang XJ; Zhao F; Villeneuve NF; Wu T; Jiang T; Sun Z; White E; Zhang DD
    Mol Cell Biol; 2010 Jul; 30(13):3275-85. PubMed ID: 20421418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants.
    Dinkova-Kostova AT; Holtzclaw WD; Cole RN; Itoh K; Wakabayashi N; Katoh Y; Yamamoto M; Talalay P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11908-13. PubMed ID: 12193649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers.
    Kwak MK; Wakabayashi N; Kensler TW
    Mutat Res; 2004 Nov; 555(1-2):133-48. PubMed ID: 15476857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway.
    Hayes JD; McMahon M; Chowdhry S; Dinkova-Kostova AT
    Antioxid Redox Signal; 2010 Dec; 13(11):1713-48. PubMed ID: 20446772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system.
    Kobayashi M; Itoh K; Suzuki T; Osanai H; Nishikawa K; Katoh Y; Takagi Y; Yamamoto M
    Genes Cells; 2002 Aug; 7(8):807-20. PubMed ID: 12167159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response.
    Sun Z; Wu T; Zhao F; Lau A; Birch CM; Zhang DD
    Mol Cell Biol; 2011 May; 31(9):1800-11. PubMed ID: 21383067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.
    Itoh K; Tong KI; Yamamoto M
    Free Radic Biol Med; 2004 May; 36(10):1208-13. PubMed ID: 15110385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2.
    He X; Ma Q
    J Pharmacol Exp Ther; 2010 Jan; 332(1):66-75. PubMed ID: 19808700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation.
    Hong F; Sekhar KR; Freeman ML; Liebler DC
    J Biol Chem; 2005 Sep; 280(36):31768-75. PubMed ID: 15985429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1.
    Kobayashi A; Kang MI; Watai Y; Tong KI; Shibata T; Uchida K; Yamamoto M
    Mol Cell Biol; 2006 Jan; 26(1):221-9. PubMed ID: 16354693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane.
    Hong F; Freeman ML; Liebler DC
    Chem Res Toxicol; 2005 Dec; 18(12):1917-26. PubMed ID: 16359182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; O'Connor T; Yamamoto M
    Genes Cells; 2003 Apr; 8(4):379-91. PubMed ID: 12653965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nrf2 inhibits hepatic iron accumulation and counteracts oxidative stress-induced liver injury in nutritional steatohepatitis.
    Okada K; Warabi E; Sugimoto H; Horie M; Tokushige K; Ueda T; Harada N; Taguchi K; Hashimoto E; Itoh K; Ishii T; Utsunomiya H; Yamamoto M; Shoda J
    J Gastroenterol; 2012 Aug; 47(8):924-35. PubMed ID: 22367278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of novel Nrf2 inducers designed to target the intervening region of Keap1.
    Wu JH; Miao W; Hu LG; Batist G
    Chem Biol Drug Des; 2010 May; 75(5):475-80. PubMed ID: 20486933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of chemical activation of Nrf2.
    Li Y; Paonessa JD; Zhang Y
    PLoS One; 2012; 7(4):e35122. PubMed ID: 22558124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish.
    Li L; Kobayashi M; Kaneko H; Nakajima-Takagi Y; Nakayama Y; Yamamoto M
    J Biol Chem; 2008 Feb; 283(6):3248-3255. PubMed ID: 18057000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation.
    Wakabayashi N; Itoh K; Wakabayashi J; Motohashi H; Noda S; Takahashi S; Imakado S; Kotsuji T; Otsuka F; Roop DR; Harada T; Engel JD; Yamamoto M
    Nat Genet; 2003 Nov; 35(3):238-45. PubMed ID: 14517554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner.
    Lau A; Zheng Y; Tao S; Wang H; Whitman SA; White E; Zhang DD
    Mol Cell Biol; 2013 Jun; 33(12):2436-46. PubMed ID: 23589329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.