BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1076 related articles for article (PubMed ID: 14585973)

  • 41. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex.
    Lo SC; Hannink M
    J Biol Chem; 2006 Dec; 281(49):37893-903. PubMed ID: 17046835
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation.
    Kobayashi M; Yamamoto M
    Antioxid Redox Signal; 2005; 7(3-4):385-94. PubMed ID: 15706085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents.
    Giudice A; Arra C; Turco MC
    Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes.
    Ichikawa T; Li J; Meyer CJ; Janicki JS; Hannink M; Cui T
    PLoS One; 2009 Dec; 4(12):e8391. PubMed ID: 20027226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modification of keap1 cysteine residues by sulforaphane.
    Hu C; Eggler AL; Mesecar AD; van Breemen RB
    Chem Res Toxicol; 2011 Apr; 24(4):515-21. PubMed ID: 21391649
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nrf2-Keap1 defines a physiologically important stress response mechanism.
    Motohashi H; Yamamoto M
    Trends Mol Med; 2004 Nov; 10(11):549-57. PubMed ID: 15519281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CACUL1/CAC1 Regulates the Antioxidant Response by Stabilizing Nrf2.
    Kigoshi Y; Fukuda T; Endo T; Hayasaka N; Iemura S; Natsume T; Tsuruta F; Chiba T
    Sci Rep; 2015 Aug; 5():12857. PubMed ID: 26238671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system.
    Takaya K; Suzuki T; Motohashi H; Onodera K; Satomi S; Kensler TW; Yamamoto M
    Free Radic Biol Med; 2012 Aug; 53(4):817-27. PubMed ID: 22732183
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains.
    Ogura T; Tong KI; Mio K; Maruyama Y; Kurokawa H; Sato C; Yamamoto M
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2842-7. PubMed ID: 20133743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals.
    Surh YJ; Kundu JK; Na HK
    Planta Med; 2008 Oct; 74(13):1526-39. PubMed ID: 18937164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway.
    Baird L; Yamamoto M
    Mol Cell Biol; 2020 Jun; 40(13):. PubMed ID: 32284348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; Igarashi K; Engel JD; Yamamoto M
    Genes Dev; 1999 Jan; 13(1):76-86. PubMed ID: 9887101
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner.
    Rada P; Rojo AI; Chowdhry S; McMahon M; Hayes JD; Cuadrado A
    Mol Cell Biol; 2011 Mar; 31(6):1121-33. PubMed ID: 21245377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex.
    Baird L; Llères D; Swift S; Dinkova-Kostova AT
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15259-64. PubMed ID: 23986495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound.
    Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination.
    Hast BE; Goldfarb D; Mulvaney KM; Hast MA; Siesser PF; Yan F; Hayes DN; Major MB
    Cancer Res; 2013 Apr; 73(7):2199-210. PubMed ID: 23382044
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants.
    Dinkova-Kostova AT; Kostov RV; Canning P
    Arch Biochem Biophys; 2017 Mar; 617():84-93. PubMed ID: 27497696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage.
    Bae SH; Sung SH; Oh SY; Lim JM; Lee SK; Park YN; Lee HE; Kang D; Rhee SG
    Cell Metab; 2013 Jan; 17(1):73-84. PubMed ID: 23274085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.