These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 14586708)
1. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708 [TBL] [Abstract][Full Text] [Related]
2. Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Cioffi M; Boschetti F; Raimondi MT; Dubini G Biotechnol Bioeng; 2006 Feb; 93(3):500-10. PubMed ID: 16224789 [TBL] [Abstract][Full Text] [Related]
3. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Williams KA; Saini S; Wick TM Biotechnol Prog; 2002; 18(5):951-63. PubMed ID: 12363345 [TBL] [Abstract][Full Text] [Related]
4. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Saini S; Wick TM Biotechnol Prog; 2003; 19(2):510-21. PubMed ID: 12675595 [TBL] [Abstract][Full Text] [Related]
5. A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Chen HC; Lee HP; Sung ML; Liao CJ; Hu YC Biotechnol Prog; 2004; 20(6):1802-9. PubMed ID: 15575715 [TBL] [Abstract][Full Text] [Related]
6. Increased rate of chondrocyte aggregation in a wavy-walled bioreactor. Bueno EM; Bilgen B; Carrier RL; Barabino GA Biotechnol Bioeng; 2004 Dec; 88(6):767-77. PubMed ID: 15515164 [TBL] [Abstract][Full Text] [Related]
7. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Lappa M Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686 [TBL] [Abstract][Full Text] [Related]
8. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Bilgen B; Sucosky P; Neitzel GP; Barabino GA Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of a bioreactor for physical stimulation of engineered cartilage. Démarteau O; Jakob M; Schäfer D; Heberer M; Martin I Biorheology; 2003; 40(1-3):331-6. PubMed ID: 12454423 [TBL] [Abstract][Full Text] [Related]
10. The effect of ultrasound stimulation versus bioreactors on neocartilage formation in tissue engineering scaffolds seeded with human chondrocytes in vitro. Hsu SH; Kuo CC; Whu SW; Lin CH; Tsai CL Biomol Eng; 2006 Oct; 23(5):259-64. PubMed ID: 16890016 [TBL] [Abstract][Full Text] [Related]
11. The effect of media perfusion on three-dimensional cultures of human chondrocytes: integration of experimental and computational approaches. Raimondi MT; Boschetti F; Falcone L; Migliavacca F; Remuzzi A; Dubini G Biorheology; 2004; 41(3-4):401-10. PubMed ID: 15299272 [TBL] [Abstract][Full Text] [Related]
12. Fluid mechanics of a spinner-flask bioreactor. Sucosky P; Osorio DF; Brown JB; Neitzel GP Biotechnol Bioeng; 2004 Jan; 85(1):34-46. PubMed ID: 14705010 [TBL] [Abstract][Full Text] [Related]
13. Computational fluid dynamics for improved bioreactor design and 3D culture. Hutmacher DW; Singh H Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813 [TBL] [Abstract][Full Text] [Related]
14. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657 [TBL] [Abstract][Full Text] [Related]
15. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering. Laganà K; Moretti M; Dubini G; Raimondi MT Proc Inst Mech Eng H; 2008 Jul; 222(5):705-15. PubMed ID: 18756689 [TBL] [Abstract][Full Text] [Related]
16. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs. Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291 [TBL] [Abstract][Full Text] [Related]
17. Design and validation of a bi-axial loading bioreactor for mechanical stimulation of engineered cartilage. Yusoff N; Abu Osman NA; Pingguan-Murphy B Med Eng Phys; 2011 Jul; 33(6):782-8. PubMed ID: 21356602 [TBL] [Abstract][Full Text] [Related]
18. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading. Miyata S; Tateishi T; Ushida T J Biomech Eng; 2008 Oct; 130(5):051016. PubMed ID: 19045523 [TBL] [Abstract][Full Text] [Related]
19. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828 [TBL] [Abstract][Full Text] [Related]
20. The fundamentals of tissue engineering: scaffolds and bioreactors. Vunjak-Novakovic G Novartis Found Symp; 2003; 249():34-46; discussion 46-51, 170-4, 239-41. PubMed ID: 12708648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]