These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 14587039)
1. Nuclear matrix bound fibroblast growth factor receptor is associated with splicing factor rich and transcriptionally active nuclear speckles. Somanathan S; Stachowiak EK; Siegel AJ; Stachowiak MK; Berezney R J Cell Biochem; 2003 Nov; 90(4):856-69. PubMed ID: 14587039 [TBL] [Abstract][Full Text] [Related]
2. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal "feed-forward-and-gate" signaling module that controls cell growth and differentiation. Stachowiak MK; Fang X; Myers JM; Dunham SM; Berezney R; Maher PA; Stachowiak EK J Cell Biochem; 2003 Nov; 90(4):662-91. PubMed ID: 14587025 [TBL] [Abstract][Full Text] [Related]
3. Nuclear accumulation of fibroblast growth factor receptors in human glial cells--association with cell proliferation. Stachowiak EK; Maher PA; Tucholski J; Mordechai E; Joy A; Moffett J; Coons S; Stachowiak MK Oncogene; 1997 May; 14(18):2201-11. PubMed ID: 9174056 [TBL] [Abstract][Full Text] [Related]
4. Nuclear trafficking of FGFR1: a role for the transmembrane domain. Myers JM; Martins GG; Ostrowski J; Stachowiak MK J Cell Biochem; 2003 Apr; 88(6):1273-91. PubMed ID: 12647309 [TBL] [Abstract][Full Text] [Related]
5. The localization of sites containing nascent RNA and splicing factors. Pombo A; Cook PR Exp Cell Res; 1996 Dec; 229(2):201-3. PubMed ID: 8986598 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. Wei X; Somanathan S; Samarabandu J; Berezney R J Cell Biol; 1999 Aug; 146(3):543-58. PubMed ID: 10444064 [TBL] [Abstract][Full Text] [Related]
7. Nanosecond electric pulses penetrate the nucleus and enhance speckle formation. Chen N; Garner AL; Chen G; Jing Y; Deng Y; Swanson RJ; Kolb JF; Beebe SJ; Joshi RP; Schoenbach KH Biochem Biophys Res Commun; 2007 Dec; 364(2):220-5. PubMed ID: 17950251 [TBL] [Abstract][Full Text] [Related]
8. Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Markaki Y; Gunkel M; Schermelleh L; Beichmanis S; Neumann J; Heidemann M; Leonhardt H; Eick D; Cremer C; Cremer T Cold Spring Harb Symp Quant Biol; 2010; 75():475-92. PubMed ID: 21467142 [TBL] [Abstract][Full Text] [Related]
9. Fibroblast growth factor receptor 1 gene expression is required for cardiomyocyte proliferation and is repressed by Sp3. Seyed M; Dimario JX J Mol Cell Cardiol; 2008 Mar; 44(3):510-9. PubMed ID: 18275970 [TBL] [Abstract][Full Text] [Related]
10. A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Kovalenko D; Yang X; Chen PY; Nadeau RJ; Zubanova O; Pigeon K; Friesel R Cell Signal; 2006 Nov; 18(11):1958-66. PubMed ID: 16603339 [TBL] [Abstract][Full Text] [Related]
11. Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells. Antoine M; Wirz W; Tag CG; Mavituna M; Emans N; Korff T; Stoldt V; Gressner AM; Kiefer P Growth Factors; 2005 Jun; 23(2):87-95. PubMed ID: 16019430 [TBL] [Abstract][Full Text] [Related]
12. Sp1 is required for transcriptional activation of the fibroblast growth factor receptor 1 gene in neonatal cardiomyocytes. Seyed M; Dimario JX Gene; 2007 Oct; 400(1-2):150-7. PubMed ID: 17628354 [TBL] [Abstract][Full Text] [Related]
13. Repression of fibroblast growth factor receptor 1 gene expression by E2F4 in skeletal muscle cells. Parakati R; Dimario JX Dev Dyn; 2005 Jan; 232(1):119-30. PubMed ID: 15580623 [TBL] [Abstract][Full Text] [Related]
14. The intracellular domain of teneurin-1 interacts with MBD1 and CAP/ponsin resulting in subcellular codistribution and translocation to the nuclear matrix. Nunes SM; Ferralli J; Choi K; Brown-Luedi M; Minet AD; Chiquet-Ehrismann R Exp Cell Res; 2005 Apr; 305(1):122-32. PubMed ID: 15777793 [TBL] [Abstract][Full Text] [Related]
15. Organization of transcriptional regulatory machinery in osteoclast nuclei: compartmentalization of Runx1. Saltman LH; Javed A; Ribadeneyra J; Hussain S; Young DW; Osdoby P; Amcheslavsky A; van Wijnen AJ; Stein JL; Stein GS; Lian JB; Bar-Shavit Z J Cell Physiol; 2005 Sep; 204(3):871-80. PubMed ID: 15828028 [TBL] [Abstract][Full Text] [Related]
16. A subset of poly(A) polymerase is concentrated at sites of RNA synthesis and is associated with domains enriched in splicing factors and poly(A) RNA. Schul W; van Driel R; de Jong L Exp Cell Res; 1998 Jan; 238(1):1-12. PubMed ID: 9457051 [TBL] [Abstract][Full Text] [Related]
17. [SC35 splicing factor and coilin are colocalized within the "endobodies" in oocytes of the spider Araneus diadematus]. Bogoliubov DS; Bogoliubova IO Tsitologiia; 2007; 49(6):497-501. PubMed ID: 17802747 [TBL] [Abstract][Full Text] [Related]
18. [The role of human fibroblast growth factor receptor 1-IIIb isoform in proliferation of pancreatic ductal cells and its effects to mitogen-activated protein kinase]. Liu ZB; Yang YM; Qiao QL; Wan YL; Kornmann M; Huang YT Zhonghua Yi Xue Za Zhi; 2006 Oct; 86(40):2812-6. PubMed ID: 17200012 [TBL] [Abstract][Full Text] [Related]
19. Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5'-fluorouridine into nascent RNA. Casafont I; Navascués J; Pena E; Lafarga M; Berciano MT Neuroscience; 2006 Jun; 140(2):453-62. PubMed ID: 16563640 [TBL] [Abstract][Full Text] [Related]
20. Localization patterns of fibroblast growth factor 1 and its receptors FGFR1 and FGFR2 in postnatal mouse retina. Catalani E; Tomassini S; Dal Monte M; Bosco L; Casini G Cell Tissue Res; 2009 Jun; 336(3):423-38. PubMed ID: 19408015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]