These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
845 related articles for article (PubMed ID: 14587077)
21. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation. Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188 [TBL] [Abstract][Full Text] [Related]
22. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant. Woodward JJ; Chang MM; Martin NI; Marletta MA J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180 [TBL] [Abstract][Full Text] [Related]
23. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
24. Reductive nitrosylation of water-soluble iron porphyrins by S-nitroso-N-acetylpenicillamine: rate constants and EPR characterization. Vilhena FS; da Silva AW; Louro SR J Inorg Biochem; 2006 Nov; 100(11):1722-9. PubMed ID: 16904186 [TBL] [Abstract][Full Text] [Related]
25. How axial ligands control the reactivity of high-valent iron(IV)-oxo porphyrin pi-cation radicals in alkane hydroxylation: a computational study. Kamachi T; Kouno T; Nam W; Yoshizawa K J Inorg Biochem; 2006 Apr; 100(4):751-4. PubMed ID: 16516298 [TBL] [Abstract][Full Text] [Related]
26. Thermodynamic, electrochemical, high-pressure kinetic, and mechanistic studies of the formation of oxo Fe(IV)-TAML species in water. Popescu DL; Vrabel M; Brausam A; Madsen P; Lente G; Fabian I; Ryabov AD; van Eldik R; Collins TJ Inorg Chem; 2010 Dec; 49(24):11439-48. PubMed ID: 21086984 [TBL] [Abstract][Full Text] [Related]
27. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Pang SY; Jiang J; Ma J Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375 [TBL] [Abstract][Full Text] [Related]
28. pH controls the rate and mechanism of nitrosylation of water-soluble FeIII porphyrin complexes. Wolak M; van Eldik R J Am Chem Soc; 2005 Sep; 127(38):13312-5. PubMed ID: 16173763 [TBL] [Abstract][Full Text] [Related]
29. Nitric oxide transfer from the NO-donor S-nitroso-N-acetylpenicillamine to monomers and dimers of water-soluble iron-porphyrins. Vilhena FS; Louro SR J Inorg Biochem; 2004 Mar; 98(3):459-68. PubMed ID: 14987846 [TBL] [Abstract][Full Text] [Related]
30. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate. Derat E; Kumar D; Hirao H; Shaik S J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834 [TBL] [Abstract][Full Text] [Related]
31. Factors that affect the nature of the final oxidation products in "peroxo-shunt" reactions of iron-porphyrin complexes. Franke A; Wolak M; van Eldik R Chemistry; 2009 Oct; 15(39):10182-98. PubMed ID: 19714686 [TBL] [Abstract][Full Text] [Related]
32. Rapid and quantitative activation of Chlamydia trachomatis ribonucleotide reductase by hydrogen peroxide. Jiang W; Xie J; Nørgaard H; Bollinger JM; Krebs C Biochemistry; 2008 Apr; 47(15):4477-83. PubMed ID: 18358006 [TBL] [Abstract][Full Text] [Related]
33. Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles. Ye W; Ho DM; Friedle S; Palluccio TD; Rybak-Akimova EV Inorg Chem; 2012 May; 51(9):5006-21. PubMed ID: 22534174 [TBL] [Abstract][Full Text] [Related]
34. Axial ligand and spin-state influence on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes. Franke A; Fertinger C; van Eldik R Chemistry; 2012 May; 18(22):6935-49. PubMed ID: 22532376 [TBL] [Abstract][Full Text] [Related]
35. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes. Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830 [TBL] [Abstract][Full Text] [Related]
36. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex. Wasser IM; Fry HC; Hoertz PG; Meyer GJ; Karlin KD Inorg Chem; 2004 Dec; 43(26):8272-81. PubMed ID: 15606173 [TBL] [Abstract][Full Text] [Related]
37. Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water. De Laat J; Dao YH; El Najjar NH; Daou C Water Res; 2011 Nov; 45(17):5654-64. PubMed ID: 21920579 [TBL] [Abstract][Full Text] [Related]
38. Modeling the haloperoxidases: reversible oxygen atom transfer between bromide ion and an oxo-Mn(V) porphyrin. Lahaye D; Groves JT J Inorg Biochem; 2007 Nov; 101(11-12):1786-97. PubMed ID: 17825916 [TBL] [Abstract][Full Text] [Related]
39. beta-cyclodextrins-based inclusion complexes of CoFe(2)O(4) magnetic nanoparticles as catalyst for the luminol chemiluminescence system and their applications in hydrogen peroxide detection. He S; Shi W; Zhang X; Li J; Huang Y Talanta; 2010 Jun; 82(1):377-83. PubMed ID: 20685481 [TBL] [Abstract][Full Text] [Related]
40. Transient inverted metastable iron hydroperoxides in fenton chemistry. A nonenzymatic model for cytochrome p450 hydroxylation. Bach RD; Dmitrenko O J Org Chem; 2010 Jun; 75(11):3705-14. PubMed ID: 20429613 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]